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Decision Making Under

Uncertainty: A Macro User Guide

�A probability measure cannot adequately represent both the relative likelihoods of

events and the amount, type and reliability of the information underlying those likeli-

hoods�(Epstein and Wang, 1994)

0.1 Introduction

The classical distinction between �risk�and �uncertainty�traces back to Frank Knight (1921), and

states that risk is associated with situations in which an objective probability distribution of all

events relevant to decision making is known, while uncertainty characterizes choice settings in which

that probability distribution is not available to the decision-maker (DM, henceforth). Two important

remarks need to be made from the very beginning. First, this book is exclusively concerned with

decision making under uncertainty. Hence, all the advancements in the theory of choice under

risk, such as the (�rst) �prospect theory�(Kahneman and Tversky (1979)) or the �rank-dependent

expected utility theory�(Quiggin (1982)), are here mostly neglected. The second remark is related

vii
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to a terminological issue. In order to avoid confusion around the Knightian distinction, in literature

the single term �uncertainty� is frequently accompanied by an attribute. However, over the years

several attributes have been used to qualify �uncertainty�with respect to risk (in such a way that,

paradoxically, confusion seems to have risen in some respects). Hence, according to the standard

literature, throughout the book we will use the phrases �strong uncertainty�, �Knightian uncertainty�,

�non-probabilistic uncertainty�and, sometimes �strict uncertainty�with exactly the same meaning:

an objective probability distribution over all relevant events is not known by the DM.

The distinction between probabilistic and non-probabilistic contexts of choice has also been

recognized and powerfully stressed by John M. Keynes. Particularly in the context of asset prices,

Keynes (1936) has challenged the notion that the mathematical calculation of expected value has

much to do with them. Since a sort of �radical� (that is, non-probabilistic) uncertainty pervades

most of our investment decisions, the so-called �animal spirits�- de�ned as �a spontaneous urge to

action rather than inaction� - play a key role in determining those decisions: �Most, probably, of

our decisions to do something positive, the full consequence of which will be drawn out over many

days to come, can only be taken as a result of animal spirits�(Keynes (1936), Ch.7, p161). Keynes

has not ruled out the possibility that people make their decisions after a full, rigorous evaluation of

all consequences; yet he has argued that, when this possibility does not exist - and it occurs quite

frequently in the ordinary business of life - people are driven by �animal spirits�.

During the �fties a number of economists and statisticians have worked on decision theory under

uncertainty, trying to develop a reasonable and/or a realistic decision rule in situations in which

an objective probability distribution is not provided. In those years the literature on decision

theory (see Milnor (1954) and Luce and Rai¤a (1958)) has recognized four criteria under complete

ignorance: the �maximin return criterion� (Wald (1950)), the �minimax regret criterion� (Savage



0.1. INTRODUCTION ix

(1954, ch.9)), the �optimism-pessimism index criterion�(Hurwicz (1951)) and the Laplace �principle

of insu¢ cient reason�(as reconsidered by Milnor (1954) and Cherno¤ (1954)). Although they work

in rather di¤erent ways and generally identify di¤erent �optimal choices�(as we will see in the next

Section), they have the common feaure of being distribution-free decision rules, in the sense of being

able to �nd the optimal choice without requiring any probability distribution over the uncertain

events (for this reason they are usually called �decision criteria under complete ignorance�).

During approximately the same years, a meaningful distinction between risk and uncertainty

has been strongly challenged by an axiomatic approach to decision making under uncertainty, the

so-called �subjective expected utility (SEU) theory�, proposed by Savage (1954) and deeply inspired

by the previous works of de Finetti (1931) and Ramsey (1931). Broadly speaking, according to the

SEU model it is not necessary to assume the existence of an objective probability distribution in

order to make use of the expected utility criterion (axiomatized by Von Neumann and Morgenstern

(1944)). Given a preference relation satisfying some �reasonable� properties (or axioms), then a

unique expected utility-based decision rule can be derived, in which choices are made as if individ-

uals held probabilistic beliefs. As a matter of fact, also for reasons of tractability the SEU model

has been representing the standard way of dealing with uncertainty in economic models over the

last �fty years.

However, despite the supremacy of the SEU model in standard economic analysis, a number

of criticisms have been raised over the years. One of the most famous and signi�cant criticisms

has been provided by Ellsberg (1961) via a rather simple mind experiment, generally known as the

�Ellsberg paradox�. As we will see in Section 0.3, this paradox illustrates a situation in which the

common choice behavior of the (real) decision maker is incompatible with the one prescribed by the

SEU model.
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More recently the Knightian distinction has been receiving a growing attention from economists.

A huge research e¤ort has been devoted to elaborate a decision model, which could meaningfully

distinguish between situations in which an objective probability distribution is given from situations

in which it is not. A number of axiomatic approaches have been developed during the eighties and

the �rst nineties, that have generalized the SEU model so as to embrace this distinction. Even

if we suggest some alternative approaches, we are particularly interested in the Choquet expected

utility (CEU) theory, axiomatized by Schmeidler (1989), and in the maximin expected utility (MEU)

theory, axiomatized by Gilboa and Schmeidler (1989). Both of them are strongly related to the point

raised by the Ellsberg paradox, even if they start from a cognitive rather than from a behavioral

perspective.

Before concluding, another terminological remark is neccessary: in the context of CEU and MEU

models, uncertainty is also (and perhaps more often) called ambiguity, which is the original term

used by Ellesberg (1961). In what follows we will normally make use of the term �uncertainty�, in

honor of David Schmeidler. However notice that, in this stream of literature, they have exactly the

same meaning.

In this chapter we further develop the issues sketched out above, and provide the basic decision

making tools that we will be applying in the next chapters. The rest of the chapter is organized

as follows. In the next Section we shall analyze the four classic non-probabilistic decision criteria

under complete ignorance. In Section 0.3 we shall introduce some axiomatic approaches to decision

making under uncertainty (mainly SEU, CEU and MEU), present the Ellsberg paradox, and review

some recent applications of these approaches to di¤erent �elds of economic analysis. In the last

Section we shall present the plan of the book and sum up the basic �ndings of the next chapters.

.
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.

0.2 Four Classic Distribution-Free Decision Rules

0.2.1 A Basic Formalization

In this Section we provide a basic introduction to the four standard decision rules under complete

ignorance acknowledged in literature (see Milnor (1954) and Luce and Rai¤a (1958)): the �maximin

return criterion�(MMC, Wald (1950)), the �minimax regret criterion�(MMRC, Savage (1954, ch.9)),

the �optimism-pessimism index criterion� (OPIC, Hurwicz (1951)) and the Laplace �principle of

insu¢ cient reason�(PIR, Milnor (1954)). All of them are to be included in the class of the non-

probabilistic models of decision making under uncertainty, in that they allow decision makers (DMs)

to determine their optimal choice (and, more generally, to express a weak preference order) in

uncertain settings, without requiring them to know a probability distribution over all possible states

of nature.

Assume, as usual, that the DM has a perfect knowledge of the entire set of the states, but that

she is not able to evaluate the probability associated with the realization of each of them. Then

a decision problem under complete ignorance can be easily represented through a �decision table�,

such as the one in �gure 1. Ai (for i = 1; :::;m) represents the generic act, Sj (for j = 1; :::; n)

represents the generic state of nature, and cij is the consequence (pay-o¤) associated with act i and

state j. We now present these four decision rules1 .

.

States of nature

1Notice that we do not thoroughly deal with the basic properties and shortcomings of all these criteria. For a
more complete treatment see, among the others, French (1986).
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Acts

S1 S2 ::: Sn

A1 c11 c12 ::: c1n

A2 c21 c22 ::: c2n

::: ::: ::: ::: :::

Am cm1 cm2 ::: cmn

Figure 1. The generic decision table.

The maximin return criterion. MMC works as follows (refer to table 1): for each act Ai, the

decision maker identi�es the minimum pay-o¤ over the set of states of nature:

si = min
j2[1;n]

fcijg ;

where si is usually called the �security level�of act Ai. Then she chooses the act for which this

security level is the highest:

choose Ak such that sk = max
i2[1;m]

fsig = max
i2[1;m]

�
min
j2[1;n]

fcijg
�
: (MMC)

The minimax regret criterion. The decision process driven by MMRC can be split in three

stages. In the �rst stage, the DM computes the regret associated with any given pair act/state by

subtracting the consequence corresponding to that pair from the best consequence that is achievable

in the same state, that is:

rij = max
l2[1;m]

fcljg � cij

The result of this process is the �matrix of regrets�, which by construction has the same dimension

as the starting decision table. In the second stage the DM associates with each act the maximum

regret over all states of nature, that is:

�i = max
j2[1;n]

frijg :

Finally she selects the act for which the maximum regret (associated with each act) is the

smallest, that is:
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choose Ak such that �k = min
i2[1;m]

f�ig = min
i2[1;m]

�
max
j2[1;n]

frijg
�
: (MMRC)

The optimism-pessimism index criterion. In order to describe OPIC, we need to introduce �rst

the �maximax return criterion�. This is the optimistic counterpart of the maximin return in the

sense that, for each act Ai, the decision maker identi�es the maximum pay-o¤ over the set of states

of nature:

oi = max
j2[1;n]

fcijg ;

where oi is now called the �optimism level�of act Ai. Afterwards she chooses the act for which

this optimism level is the highest:

choose Ak such that ok = max
i2[1;m]

foig = max
i2[1;m]

�
max
j2[1;n]

fcijg
�
:

We only need the value oi because, under OPIC, the return associated with each act Ai is

computed according to a �-weighted average of the security level si and the optimism level oi, for

0 � � � 1. Finally the act associated with the highest weighted sum is picked up, that is:

choose Ak such that �sk + (1� �)ok = max
i2[1;m]

f�si + (1� �)oig (OPIC)

The parameter �, roughly representing the DM�s degree of pessimism, can of course vary across

di¤erent individuals.

The Laplace principle of insu¢ cient reason. This criterion states that, if the DM completely

ignores the probability distribution associated with all states of nature, she will act as if these states

were equiprobable. Hence, to evaluate each act Ai, the DM will compute the following expected

utility:

ei =
nX
j=1

(
1

n
)cij : (PIR)

Afterwards she will select the act which maximizes her expected utility:

choose Ak such that ek = max
i2[1;m]

feig = max
i2[1;m]

8<:
nX
j=1

(
1

n
)cij

9=;
As the reader can easily verify in the following example due to Milnor (1954), these criteria
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generally bring di¤erent choice results.

0.2.2 A Simple Example (Milnor (1954))

Assume that our uncertain scenario is made up of four alternative acts and four possible states of

nature, such as the one represented in the following matrix.

States of nature

acts

S1 S2 S3 S4

A1 2 2 0 1

A2 1 1 1 1

A3 0 4 0 0

A4 1 3 0 0

Figure 2. The decision table.

The optimal choice associated with the maximin return criterion is A2, since s2 = 1 > s1 = s3 =

s4 = 0. In order to �nd the optimal choice under MMRC, we must build the matrix of regrets (for

instance, the regret associated with the �rst column is computed as follows: r11 = max
1�l�2

fcljg�c11 =

2� 2 = 0, r21 = 2� 1 = 1, r31 = 2� 0 = 2, r41 = 2� 1 = 1).

States of nature

acts

S1 S2 S3 S4

A1 0 2 1 0

A2 1 3 0 0

A3 2 0 1 1

A4 1 1 1 1

Figure 3. The matrix of regrets.
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It turns out that the best choice is A4, since �4 = 1 is lower than �1 = �3 = 2 and �2 = 3:

The optimal choice under OPIC will obviously depend on the speci�c value of �. Given the

following security and optimism levels for respectively acts 1, 2, 3 and 4: (s1; o1) = (0; 2), (s2; o2) =

(1; 1), (s3; o3) = (0; 4) and (s4; o4) = (0; 3), the DM must choose among the following pay-o¤s:

2(1 � �), 1, 4(1 � �) and 3(1 � �) associated with respectively acts 1,2,3 and 4. Since 4(1 � �) >

3(1��) > 2(1��) 8� 2 [0; 1), the agent will select A3 if and only if: 4(1��) > 1! � >
3

4
. Then,

for � 2 [0; 3
4
) and � = 1, A2 is strictly preferred; for � 2 (

3

4
; 1), A3 is strictly preferred and for � =

3

4
; DM is indi¤erent between them

Finally PIR imposes A1 as the optimal choice, since e1 = 5
4 > e2 = e3 = e4 = 1:

0.3 Axiomatic Approaches to Uncertainty

In this Section our main purpose is to present and compare di¤erent preference axiomatizations

for decision making under uncertainty. We illustrate their main properties (and shortcomings),

and describe, as simply as possible, the choice behavior prescribed by each of them. Hence, we

do not thoroughly deal with the axiomatic foundations of the theories presented, even if we do

carefully mention the key axioms underlining each of them. The next Subsection is devoted to

the classic subjective expected utility (SEU) model (see, among the others, Savage (1954) and

Anscombe and Aumann (1963)). Subsection 0.3.2 presents the Ellsberg paradox (Ellsberg (1961)).

To a certain extent, it constitutes the starting point of the theoretical extensions dealt with in the

rest of the Section. In Subsections 0.3.3 and 0.3.4 we analyze two axiomatizations generalizing the

SEU model, respectively the Choquet expected utility (CEU) model (Schmeidler (1989)) and the

maximin expected utility (MEU) model (Gilboa and Schmeidler (1989)). As we will see, both of

them are based on a weakening of the �independence axiom�. In Subsection 0.3.5 we hint at an
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alternative axiomatization, developed by Bewley (1986), which instead abandons the �completeness

axiom�. Finally, in the last Subsection we brie�y review some recent applications of CEU and MEU

to di¤erent �elds of economic analysis.

0.3.1 The Subjective Expected Utility (SEU) Theory

The Knightian distinction between uncertainty and risk has been mostly neglected by the economics

mainstream over the second half of the twentieth century. The growing prominence conquered by

the expected utility principle in situations of uncertainty is largely due to the axiomatic foundation

of the subjective probability assignments (see de Finetti (1931) and Savage (1954)). The SEU theory

is a generalization of the Von Neumann-Morgenstern�s (1944) theory of expected utility, in the sense

that it extends its applicability to decision settings in which objective probabilities are not given.

According to the SEU appraoch, the objective probability distribution of the relevant events may

also be unknown to the decision maker because, in choosing among acts, she behaves as if she knew

that law and selects the feasible act with the highest (subjective) expected utility. In this sense the

SEU model seems to undermine any meaningful distinction between risk and uncertainty.

Now let us give a basic formalization of this decision rule. Given a set S and an algebra of

subsets � in S, every element s 2 S is called state of nature or simply state, and every element E

in � is called event. C denotes the set of outcomes - in the simpli�ed SEU version of Anscombe-

Aumann (1963) these outcomes are �roulette lotteries�(objective). F is the set of acts, which are

��measurable �nite-valued functions mapping states to outcomes, that is, f : S ! C 8 f 2 F

- in the Anscombe-Aumann�s (1963) framework these are the �horse lotteries� (subjective). The

representation theorem in every SEU model proves that, given a preference relation � over acts

satisfying certain properties (or axioms), there exists a unique subjective (additive) probability
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measure p(�) : � ! R and a Von Neumann-Morgenstern utility function U(�) : C ! R such that,

for any two acts f and g in F :

f � g if and only if
R
S
U(f(�))dp �

R
S
U(g(�))dp: (SEU)

In other words, the subjective expected utility form is able to represent the preference relation �,

if this relation satis�es some �reasonable�axioms. Among them we recall the weak order, continuity

and independence. These three axioms are common to the Von Neumann-Morgenstern�s expected

utility theory and to every axiomatization of SEU. Importantly, remember that they are necessary

but not su¢ cient to derive the SEU form, as we have presented it in (SEU). The particular rein-

forcements, that are needed to univocally pin down that expression, depend on the particular model

chosen2 . The �rst axiom is a rationality requirement, and implies completeness and transitivity of

the preference relation �. The second is a technical condition necessary to guarantee the existence

of a function representing �. It requires that small changes in probabilities do not alter the order

between two acts. More formally, given three acts f; g; h in F , if f � g and g � h, then there are

� and � in (0; 1) such that: �f + (1 � �)h � g and g � �f + (1 � �)h. Finally the independence

axiom states that the preference order between two acts should not be a¤ected if, for an event for

which the two acts yield the same outcome, that common outcome is changed into another common

outcome. Formally, given three acts f; g; h 2 F and a real number � 2 [0; 1], then f � g if and

only if �f + (1� �)h � �g + (1� �)h. In the traditional Savage�s framework this axiom is slightly

di¤erent and usually called the sure-thing principle.

All of the three axioms stated above have come under discussion. However we are here mostly

interested in the violations of the independence axiom (some brief considerations regarding the

2For example, in the Anscombe and Aumann�s (1963) version of SEU, two additional axioms, namely �state-
independence of preferences�and �non-degeneracy�, are required to represent the preference relation via the subjective
expected utility form.
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weak order property will be given in Subsection 0.3.5). In 1961 Daniel Ellsberg elaborated a mind

experiment, which is generally known as �The Ellsberg Paradox�. This experiment e¤ectively shows

how incongruent real choices might be with respect to the choices prescribed by the SEU model,

and justi�es that divergence on the basis of the strong uncertainty characterizing the agent�s choice

setting. The emergence of the paradox is basically due to a violation of the independence axiom.

0.3.2 The Ellsberg Paradox

Two urns 1,2 are given, each of which contains ten balls. Urn 1 is known to contain �ve white balls

and �ve black balls, while no information is given about the colors of the ten balls in urn 2. One

ball is drawn at random from each of the two urns. The DM is asked to rank four possible bets,

denoted: 1W , 1B, 2W , 2B, where 1W denotes the bet �a white ball is drawn from urn 1�, 1B the

bet �a black ball is drawn from urn 1�and so on. The DM will gain 100 euro if she wins the bet and

0 otherwise.

The paradox arises because most people show the following preference order: 1W � 1B � 2W �

2B. That is, they are indi¤erent as the color to bet on in both urns, but strictly prefer to bet on

the �known�urn rather than in the �unknown�urn. In this sense, they show a sort of �preference

for objective probabilities�. This choice behavior cannot be explained in the SEU framework, since

there is no subjective (additive) probability distribution that supports these preferences.

To accomodate Ellsberg-type behavior, it is indeed necessary to abandon the standard SEU

framework and to enter into a more general representation of choice under uncertainty. This is

exactly what we will do in the rest of the Section. For further emprical evidence against the SEU

model see, among the others, Camerer and Weber (1992).

Interestingly, this paradox reminds us of the distinction between probability and weight of evi-
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dence elaborated by Keynes (1921) in his �Treatise of Probability" . While the �probability�rep-

resents the balance of evidence in favor of a particular proposition, the �weight of evidence�stands

for the quantity of information supporting that balance. In our case the prevailing choice of urn 1

is not due to a �better�probability distribution but to a superior weight of evidence that supports

it. As a matter of fact, the di¤erence between clear and vague probabilities has been rejected by

the subjectivist school, and the paradox �nally arises because �the probability attached to an un-

certain event does not re�ect the heuristic amount of information that led to the assignment of that

probability�(Schmeidler (1989)).

0.3.3 The Choquet Expected Utility (CEU) Theory

The Choquet expected utility (CEU) model has been axiomatized by Schmeidler (1989) in the

Anscombe-Aumann�s (1963) framework. It is a generalization of the subjective expected util-

ity theory, which can accommodate the choice behavior of Ellsberg-type situations. The exten-

sion consists of allowing for non-additive probability distributions. As is well known, in the SEU

model subjective beliefs are represented via an additive probability function p(�), whose three

basic properties are: (i) p(?) = 0; (ii) p(S) = 1 and, given two generic events E;F in � (iii)

p(E[F )+p(E\F ) = P (E)+p(F ). A non-additive probability function �(�), also called a capacity,

is a generalization of the additive one, in the sense that it satis�es the �rst two properties and

replaces the last one with the following weaker property: given two events E;F in �, E � F implies

�(E) � �(F ). As we will see, a non-additive probability measure is able to re�ect the Keynesian

�weight of evidence�, that is, the amount of information used to evaluate the probability of an event.

In decision theory the idea of non-additive probability distributions was not new at the time it

was introduced by Schmeidler (1989). In a context of decision making under pure risk Kahneman
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and Tversky (1979), in the �rst version of their Prospect Theory, had introduced a probability

weighting function, which transformed the individual probabilities directly into decision weights.

However, their formalization presented serious analytical di¢ culties, since the decision rule violated

continuity and monotonicity (i.e., the �rst order stochastic dominance). One of the great merits of

Schmeidler has been to overcome this problem by introducing the Choquet integral (Choquet (1955))

in order to compute the expected utility. The Choquet integral of a measurable function f : S ! R

with respect to a non-additive probability distribution �(�) can be de�ned as follows3 :

CI�(f) =
R
S
f d� =

0R
�1

[�(f � �)� 1] d�+
1R
0

�(f � �)d� (CI)

The CEU model is an axiomatic theory. It states some properties to be satis�ed by the preference

ralation �, and derives the (unique) expected utility form which represents it. The key di¤erence

with respect to the Anscombe-Aumann�s (1963) model is the presence of the co-monotonic indepen-

dence axiom, which is a weakening of the standard independence axiom. Two acts f and g are said

to be co-monotonic if, for every two states s and t, it never happens that f(s) � f(t) and g(s) � g(t).

This new axiom states that, given three co-monotonic acts f; g; h 2 F and a real number � 2 ]0; 1[,

then f � g implies �f + (1 � �)h � �g + (1 � �)h. By substituting for this weaker version of

the independence axiom into the Anscombe-Aumann�s framework, Schmeidler (1989) proves4 that

there exists a unique non-additive probability measure �(�), and a Von Neumann-Morgenstern util-

ity function U(�), such that the resulting Choquet expectation represents the preference relation �.

Formally, for any two acts f and g in F :

f � g if and only if
R
S
U(f(�))d� �

R
S
U(g(�))d� (CEU)

3We will provide a computational example of Choquet expectation, in the simple case in which the function f takes
�nitely many values, later in this Subsection. Notice that in that case the Choquet expectation can be computed as
follows:

CE�(f) =
R
s fd� = f(s1) +

NP
i=2

[f(si)� f(si�1)] � � (fsi; :::; sig) ;

where the outcomes are arranged in increasing order: f(s1) � ::: � f(sN ).
4 Indeed he also replaces the �strict monotonicity axiom�of Anscombe and Aumann with the �monotonicity axiom�
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where the integral is now a Choquet integral. According to Schmeidler (1989), a CEU-maximizer

is said to be uncertainty averse if her subjective beliefs are represented by a convex capacity.

Convexity means that, for any two events E;F in �, it holds �(E [ F ) + �(E \ F ) � �(E) + �(F ).

This property states that the (non-additive) probability of a set cannot be smaller than the sum of

the (non-additive) probabilities of the cells of the partition of that set. In particular, the uncertainty

(�) of the belief about an event E can be measured by the expression �(�(E)) = 1� �(E)� �(Ec).

Importantly, notice that this is a measure associated with the probability of a single event, not with

the whole subjective prior. In other words it is not generally possible to compare two di¤erent priors

in order to state which one is more uncertain. This de�nition of uncertainty aversion (together with

the one that will be given in the subsequent Section) has recently been questioned, and some other

de�nitions have been proposed5 .

Example 1 The following example, drawn from Mukerji (1998), illustrates how to compute the

Choquet expectation (CE) in a rather simple case. Consider a state space 
 partitioned into two

events, E and Ec. Also assume that E consists of two possible events, E1 and E2, and that E1

is in turn composed of E11 and E12. The folllowing non-additive probability distribution is given:

�(E11) = 0:1; �(E12) = 0:2; �(E1) = 0:5; �(E2) = 0:2; �(E) = 0:8; �(Ec) = 0:2; �(E11 [ X) =

�(E11) + �(X); �(E12 [X) = �(E12) + �(X) where X = fE2;Ec; E2 [ Ecg; �(E1 [Ec) = �(E1) +

�(Ec); �(E2 [ Ec) = �(E2) + �(E
c); �(
) = 1. Finally the pay-o¤s associated with the act f

are as follows: f(E11) = 10; f(E12) = 20; f(E2) = 5; f(Ec) = 0. Now order all pay-o¤s in

decraesing order and compute the expected value of the act f with respect to � as follows: CE�(f) =

f(E12)�(E12) + f(E11) [�(E1)� �(E12)] + f(E2) [�(E)� �(E1)] + f(Ec) [�(
)� �(E)] = 8:5. It is

5See, among the others, Epstein (1999), Ghirardato-Marinacci (2002), and Ghirardato et al. (2004). For a brief
overview of the issue see also Ghirardato (2003).



xxii DECISION MAKING UNDER UNCERTAINTY: A MACRO USER GUIDE

even more intuitive to compute the Choquet expectation in the following alternative way:

CE�(f) = �(E11)f(E11)+�(E12)f(E12)+�(E2)f(E2)+�(E
c)f(Ec)+[�(E1)� f�(E11) + �(E12)g]min ff(E11); f(E12)g+

[�(E)� f�(E1) + �(E2)g]�

min ff(E11); f(E12); f(E2)g = 8:5:

The �rst four addends in the expression above closely resemble the standard expectation opera-

tor. The crucial di¤erence lies in the fact that, since the capacity � is convex, the two �residual�

probabilities ([�(E1)� f�(E11) + �(E12)g] and [�(E)� f�(E1) + �(E2)g]) in each subset of events

must be attached to the worst pay-o¤ inside that subset.

The choice behavior in the Ellsberg�s experiment can be explained if the agent�s subjective prob-

ability is a convex capacity. To verify it, consider as an example that a DM, who has shown a

preference for betting on the �known�urn 1, presents the following convex probability distribution

over the �unknown�urn 2: �(2W ) = �(2B) = 0:47, and the following additive probability distri-

bution over the �known�urn 1: �(1W ) = �(1B) = 0:5 The convexity of the �rst distribution is

easily veri�ed: �(2W ) + �(2B) = 0:94 < �(W [B) = 1, where 2W and 2B are two disjoint events.

If we compute the Choquet expectation over the two urns, we get CE�(1) = 0:5 � 100 + 0:5 � 0 >

CE�(2) = 0:47 � 100+ (1� 0:47) � 0. Given those subjective beliefs, the strict preference for urn 1 is

now perfectly rational.

0.3.4 The Maximin Expected Utility (MEU) Theory

MEU theory has been axiomatized by Gilboa and Schmeidler (1989) in the Anscombe-Aumann�s

(1963) version of the SEU model. In representing subjective beliefs, it suggests to replace the

standard single (additive) prior p(�) with a closed and convex set � of (additive) priors. For this

reason MEU model belongs to the class of multi-prior models. The choice among alternative acts is



0.3. AXIOMATIC APPROACHES TO UNCERTAINTY xxiii

made according to the maximin strategy: for each act the DM �rst computes the minimal expected

utility over the set � of priors, and �nally singles out the act associated with the highest computed

value. According to this model, the agent is said to be uncertainty averse if the set of priors is

not a singleton. The decision problem can then be visualized as a �two-player zero-sum game�

characterized by:

� the minimizing behavior of a �malevolent Nature�, which selects the prior belief associated

with the �worst possible scenario�inside a pre-speci�ed set of priors and

� the EU-maximizing behavior of the agent, whose optimal choice must take into account the

worst-case strategy implemented by Nature.

The two key axioms that lead to the new representation theorem are:

1. the �uncertainty aversion� axiom, which requires that the decision maker weakly prefer to

randomize her choice among mutually indi¤erent acts: i.e for any two acts f; g in F , f � g !

�f + (1� �)g � f 8� 2 ]0; 1[ :

2. The �c-independence�axiom, a weakening of the classical independence axiom, which requires

that an act f be preferred to an act g if and only if any mixture of f with a constant act h is

preferred to the same mixture between g and h.

The representation theorem states that, given a preference relation � satisfying certain axioms

(among which we have recalled the two key axioms above), then there exists a unique closed and

convex set � of �nitely additive probability measures p(�) on �, and a Von Neumann-Morgenstern

utility function U(�) : C ! R such that the maximin subjective expected utility form represents �,

that is, such that for any two acts f and g:
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f � g if and only if min
p2�

R
S
U(f(�))dp � min

p2�

R
S
U(g(�))dp (MEU)

Think again of the Ellsberg Paradox and assume that the DM shows the SEU-incompatible

preference order: 1W � 1B � 2W � 2B. To verify the compatibility between this preference order

and the MEU model, assume that subjective beliefs in the known urn 1 are represented by the

single additive prior [0:5; 0:5], where the �rst number stands for the probability of drawing a white

ball, while in the unknown urn 2 they are represented by a range of priors, such as the following

one: [(0:47; 0:53) ; (0:47; 0:53)], where the �rst interval is the probability interval associated with the

event �drawing a white ball�. When deciding a bet on urn 2, the DM always picks up the worst

prior in computing expected utility, and then she compares the two following expected utility values:

MEU(1) = SEU(1) = 0:5 � 100 + 0:5 � 0 > MEU(2) = 0:47 � 100 + 0:53 � 0: As a result, the DM

always prefers to bet on the known urn 1.

There is a close relationship between MEU and CEU, if the non-additive probability used by

the CEU-maximizer is convex. In order to analyze the basic similarities and di¤erences between

them, we need to introduce the concept of core. Given a convex capacity �(�), and given the

set � of all possible �nitely additive priors on the state space S, the core of �(�), denoted by

�(�), can be de�ned as the set of �nitely additive priors that majorize �(�) point-wise, that is:

�(�) = fpi 2 � : pi(E) � �(E) 8 E 2 �g. As we have seen in the previous Subsection, the CEU-

maximizer computes expected utility by means of the Choquet integral as de�ned in (CI). By

de�nition, this value corresponds to the minimum of all possible expected values computed according

to all additive priors inside the core �(�):

CE�(f) = min
p2�(�)

R
S
U(f(�))dp:

Hence CEU under a convex capacity and MEU bring exactly the same results if the range of

priors � equals the core �(�) of the non-additive prior.
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0.3.5 Multiple Priors with Unanimity Ranking

CEU and MEU axiomatizations are both based on a weakening of the independence axiom in the

SEU version of Anscombe and Aumann (1963)6 . However independence is not the unique axiom to

have been questioned over the years. In particular, in this Subsection we brie�y introduce the model

developed by Bewley (1986, 2003). He has axiomatized his decision rule by dropping the axiom of

complete preferences inside the Anscombe and Aumann�s (1963) framework. Assume, as we did

under MEU theory, that the DM is endowed with a closed and convex set � of additive priors p.

As we have just seen, in evaluating each act MEU suggests to replace this set with the minimizing

prior. Bewley alternatively proposes to retain the whole set of priors and to compute, for each act,

the expected utility with respect to all of them. Then, he states, an act f is preferred to an act g if,

for every prior p inside �, the expected utility associated with f is above the one associated with

g. More formally:

f � g if and only if
R
s
U(f(�))dp >

R
s
U(g(�))dp 8p 2 �: (MPUR)

This criterion reminds us of the �strict domination�principle since, in order to be preferred, the

act f must strictly dominate (in terms of expected utility) the act g for all possible p. Because

of that, it only induces a partial ordering: the reader can easily imagine a situation in which f is

preferred to g with respect to a certain subset of priors � � �, while the converse is true with respect

to its complement �c. The violation of the completeness axiom has been considered as a weak point

of this model by some decision theorists: even for purely practical reasons, it is problematical to

handle situations in which the economic agent is simply not able to decide. Bewley answered to this

6The CEU model has been axiomatized in the original Savage�s framework by Gilboa (1987).
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criticism by elaborating the idea of the existence of a status quo act f0, which is always preferred

�by default�unless another act dominates it in the sense clari�ed above. Unfortunately Bewley has

not still developed a theory of how this status quo is generated.

0.3.6 Economic Applications of CEU and MEU

CEU and MEU models, as axiomatized by Schmeidler (1989) and Gilboa-Schmeidler (1989), have

been largely applied to a wide range of research �elds in economics. In this Section we will brie�y

review some applications respectively related to contract theory, �nance and game theory7 .

In contract theory Mukerji (1998) has shown that the uncertainty aversion of the agent, as

formalized by the CEU model, can (i) be one of the reasons for the contracts�incompleteness and

(ii) provide an explanation for the puzzle related to the �rm�s choice between vertical integration

and incentive contracts. With respect to the second point, notice in fact that ambiguity makes

vertical integration much more widespread than predicted by standard theory, and this accords well

with recent empirical �ndings. One common result to this stream of literature (see also Mukerji

(2002)) is that uncertainty aversion leads to optimal contracts with lower powered incentives (than

those determined by the standard theory). Also this point is supported by empirical work.

The range of applications in �nancial economics is particularly rich. Dow and Werlang (1992)

have applied the CEU decision rule to the portfolio choice and, in a model with one safe and one risky

asset, have proven that there exists a non-degenerate price interval at which a CEU agent will strictly

prefer to take a zero position in the risky asset (that is, she neither buys nor sells short the asset).

This proposition seems consistent with the empirical �ndings, and generalizes the standard result

(based on SEU agents), in which that interval collapses to a point. Epstein and Wang (1994) extend

7For a more complete survey of economic applications see Mukerji and Tallon (2003).
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that proposition by analyzing the e¤ects of knightian uncertainty on the equilibrium asset prices in

a general equilibrium framework. In an intertemporal pure-exchange economy a là Lucas (1978),

they assume an uncertainty averse representative agent (via the MEU model). Their contribution is

twofold. On the one hand, they provide the �rst extension of the MEU model to a dynamic setting.

On the other hand, they �nd that the indeterminacy of the general equilibrium solution cannot be

excluded. In other words, the existence of the knightian uncertainty in the fundamentals of the

economy may lead to a continuous range of equilibria for security prices. This result could provide

an explanation for the �excess volatility puzzle�, that is, for the fact that empirical analysis has been

showing that real asset prices are more volatile than predicted by canonical asset pricing models.

As stated by Epstein and Wang, �the non-uniqueness of prices and its �origin�in the multiplicity

of underlying priors accord well with Keynes�s intuition�; that is to say, the indeterminacy calls

attention to the role played by �animal spirits�in both determining the particular equilibrium that

the economy eventually reaches and justifying the sizeable volatility of asset prices.

The Schmeidler�s approach has also stimulated a variety of applications in game theory. Much

theoretical e¤ort has been devoted to the de�nition of the new solution concepts, such as the notion

of strategic equilibrium, under ambiguity in complete information normal form games (see among the

others Dow and Werlang (1994), Lo (1996) and Marinacci (2000)). The consideration of ambiguity

on the players�beliefs has also brought new insights in di¤erent applied contexts, such as auction

theory (Lo (1998)) and voting behavior analysis (Ghirardato and Katz (2002)). Finally it is worth

mentioning the paper by Eichberger and Kelsey (2002), which analyzes the e¤ect of ambiguity on a

public good contribution game. Yet much work remains to be done in game theory under Knightian

uncertainty.

An approach based upon a similar intuition as the one which inspired the Schmeilder�s work is
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the one developed by Hansen and Sargent in a number of recent contributions8 . The starting point

of these authors is rather di¤erent though, being the �rational expectations (RE) hypothesis�. As is

well known, one of the building blocks of the RE approach is the idea that the agent and the model

builder share the same knowledge about the model. Now, since the latter normally recognizes that

her model is just an approximation of the �true model�, then the agent must correspondingly share

the same doubts about its correct speci�cation. Hansen and Sargent claim that the agent copes

with this �model uncertainty�(or misspeci�cation) by using a �robust decision rule�which, although

applied in a di¤erent framework, closely resembles the Schmeidler�s MEU model: the decision maker

�perceives�a number of alternative models (as expressed via multiple prior beliefs), and maximixes

her expected pay-o¤ under the worst possible model. The decisions, originating from the application

of the maximin strategy, turn out to be robust against possible misspeci�cations.

0.4 Plan of the Book

In the chapters that follow we shall provide �ve applications of the decision rules that we have been

introducing in this chapter. Part I is concerned with applications to sunspot theory. Sunspot theory

has formalized the idea that, in some circustances, economic fundamentals cannot be su¢ cient

to pin down univocally the equilibrium allocation, and that the Keynesian �animal spirits� can

eventually matter. In this framework, strong uncertainty seems to us a promising way to qualify

purely �extrinsic uncertainty�(that is, uncertainty not related to fundamentals), and to represent

the possibility of an agent�s �fuzzy perception�of the sunspot activity.

In chapter 1 we consider a two-period, sunspot, pure-exchange economy a là Cass and Shell

(1983), and analyze the case in which agents do not have a probabilistic knowledge of the �sunspot

8Among the others, we recall Hansen, Sargent and Tallarini (1999), and Hansen and Sargent (2001).
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activity�. Two generations, each of which is made up of identical agents, populate this economy.

The participation in the Arrow securities market is restricted and the generation, which is allowed to

trade in assets, can alternatively confront the uncertainty via two standard distribution-free decision

rules under �complete ignorance�(Luce and Rai¤a (1958)): the �minimax regret criterion�(Savage

(1954), ch.9) and the �maxmin return criterion� (Wald (1950)). When the former is used, then

sunspots can matter. In particular we prove that, if the economy admits two Walrasian equilibria,

then a unique sunspot equilibrium always exists. We pin down this equilibrium, determine the prices

of the Arrow securities and show that, at these prices, no trade in securities takes place. In the same

framework we prove that, with agents using the maxmin return criterion, sunspots do not matter.

In chapter 2 we provide an application of the Gilboa-Schmeidler�s MEU decision rule to the

standard literature on �bank runs�, as started with the seminal Diamond and Dybvig (1983). In

particular, we consider the banking model elaborated by Peck and Shell (2003), in which a broad

class of feasible contractual arrangements is allowed and which admits a run equilibrium, and stress

the assumption that depositors are uncertain of their position in the queue when expecting a run.

Given MEU maximizing depositors, we prove that there exists a positive measure set of subjective

prior beliefs, obtained from the minimization over the set of admissible priors, for which the bank run

equilibrium disappears. The implication is that �suspension schemes�are valuable since, in addition

to improving risk-sharing among agents (Wallace (1990)), they may undermine panic-driven bank

runs.

Part 2 is concerned with the neo-Schumpeterian growth theory (SGT). In SGT, the Schumpeter�s

view of economic development, as spurred by incessant R&D races aimed at gaining monopoly prof-

its, is incorporated into an Arrow-Debreu dynamic general equilibrium framework with �measurable

uncertainty�(risk). The assumption of a perfectly assessable investment horizon - that is, the idea
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that transparent and well-organized �nancial markets allow savers to �nance R&D activity in the

light of an expected discounted value of future returns �revealed�by an e¢ cient stock market - is

standard along Schumpeterian growth models. However, the innovation process is probably one

of the most intrinsically uncertain economic activities. The mere observation of reality suggests

that investors are not generally able to evaluate exactly the expected returns from R&D activity.

In the next three chapters we will be concerned with R&D-driven growth models, in which some

sort of (strong) uncertainty on the agents�beliefs about these returns is diversely introduced and

formalized. Notice that this idea is quite close to the Schumpeter�s original view of the innovative

process as the breaking of a stationary equilibrium brought about by �resourceful� entrepreneurs

and, hence, as a process characterized by some intrinsically unpredictable aspect.

In chapter 3 we claim that investment decisions on R&D activity are actually taken under

conditions of strict uncertainty on their possible returns. As is well known, in the standard neo-

Schumpeterian growth theory the arrival of innovation in the economy is governed by a Poisson

process. The parameter of this process �, representing the �ow probability of innovation, is as-

sumed to be perfectly known by investors. In this paper we explore the theoretical implications of

the - rather realistic - possibility that investment decisions on R&D activity be taken under condi-

tions of strong uncertainty on their possible returns. In the framework developed by Aghion and

Howitt (1992) we then remove the hypothesis of a perfectly known �, and assume that neither its

exact value nor a prior distribution over its potential values is known by investors when deciding

upon R&D investments. The investment decision process under complete ignorance is alternatively

modeled via the four distribution-free choice criteria surveyed in Section 0.2. The equilibrium R&D

e¤orts in steady-state are then determined under all these decision rules, and �nally compared with

each other and with the standard Aghion-Howitt solution. Comparative statics and welfare analysis
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are also carried out, and provide results in accordance with the original model. This paper repre-

sents an attempt to extend a standard Schumpeterian framework in order to account for the lack

of information characterizing the returns on R&D investments, and proves the robustness of this

framework to the investors�strong uncertainty.

In Chapter 4 we provide a re-foundation of the symmetric growth equilibrium characterizing the

research sector of vertical R&D-driven growth models (such as Grossman and Helpman (1991) and

Howitt (1999)). This result does not rely on the usual assumption of a symmetric expectation on the

future per-sector R&D expenditure. On the contrary, future per-sector distribution of R&D e¤orts

is assumed to be strictly uncertain to the decision maker. By using the Gilboa-Schmeidler�s MEU

decision rule, we prove that the symmetric structure of R&D investment is the unique equilibrium

compatible with uncertainty averse agents adopting a maximin strategy.

Finally in chapter 5, we develop a quality-ladder growth model with asymmetric fundamentals. In

this model the steady-state analysis reveals that an asymmetric composition of expected R&D e¤orts

is actually required in order to make the engaging in R&D in each sector equally pro�table. However,

if returns in R&D are equalized, agents turn out to be indi¤erent as to where targeting research

and, hence, the problem of the allocation of R&D investments across sectors is indeterminate. As

in chapter 4, to solve this problem we assume that the agents�beliefs on the future composition of

R&D e¤orts are characterized by strong uncertainty and formalize their attitude towards uncertainty

once again via the MEU model. With this assumption we provide a refoundation of the rational

expectations equilibrium, in which actual and expected R&D e¤orts are equal among each others

and are such that returns are equalized across sectors.
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Part I

Strong Uncertainty in Sunspot

Theory

1





3

�Most, probably, of our decisions to do something positive, the full consequence of which

will be drawn out over many days to come, can only be taken as a result of animal spirits�

(John Maynard Keynes, 1936).



4



Chapter 1

Do Sunspots Matter Under

Complete Ignorance?

1.1 Introduction

In a seminal paper Cass and Shell (1983, JPE) prove that, in a simple general equilibrium model with

overlapping generations, �extrinsic uncertainty�- that is, uncertainty not a¤ecting fundamentals -

may play a role in determining the equilibrium allocation. In their model �sunspots matter�because

the overlapping-generations structure of the model brings about restricted participation in the Arrow

securities market1 .

We develop a two-period pure-exchange general equilibrium model much in the spirit of Cass and

Shell (1983). Two generations, each of which is made up of identical agents, populate the economy

1 In the same work the authors also prove that, even though participation is not restricted, sunspots can matter if
economic agents have heterogeneous beliefs on the �sunspot activity�.
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and the participation in the Arrow securities market is restricted to the one born in the �rst period.

�Strong uncertainty�seems a promising way to qualify purely �extrinsic uncertainty�and to represent

the possibility of an agent�s �fuzzy perception�of the sunspot activity2 . In our model the agents

trading in assets are not able to evaluate the probability of the realization of the di¤erent states

of nature generated by �extrinsic uncertainty�. In this choice scenario of complete ignorance (Luce

and Rai¤a (1958)), these agents can alternatively select their optimal consumption bundle via two

standard non-probabilistic decision rules: the �minimax regret criterion� (MMRC henceforth, see

Savage (1954), ch.9) and the �maxmin return criterion�(MMC, see Wald (1950))3 .

We show that, in an economy populated by decision makers who care about minimizing their

maximum regret, sunspots matter. In particular, we prove that, in an economy admitting two

Walrasian equilibria, a unique sunspot equilibrium always exists. We determine the equilibrium

prices of the Arrow securities and show that, at these prices, no trade in securities will take place.

In the same framework we prove that, with the agents confronting extrinsic uncertainty via the

�maxmin return criterion�, sunspots do not matter.

The rest of the chapter is organized as follows. In the next Section we describe our simple

pure-exchange economy. In Section 4 we prove our results.

1.2 The Model

We consider a simple pure-exchange economy lasting two periods, � = 0; 1 and characterized by l

commodities, and two states of nature, s = �; �. The uncertainty generated by the existence of

2A �rst attempt to introduce strong uncertainty in the evaluation of the �sunspot activity� has been developed
by Tallon (1998): in his model the agents are assumed to be Choquet-expected-utility maximizers (see Schmeidler
(1989)).

3A treatment of the MMC and the MMRC in a general equilibrium framework has been provided by Pazner-
Schmeidler (1975).
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these two states is �extrinsic�, in the sense that it does not a¤ect any fundamentals (preferences and

endowments). There are two distinct generations of identical agents, G0 born in period 0 and living

to the end of time, and G1 born in period 1 and also living to the end of time. The agents of both

generations evaluate their consumption bundles via smooth, strictly increasing and strictly concave

utility functions U�h (�) � U
�
h (�) � Uh(�) for h in G0,G1. Endowments are represented by the vector

!h(s) � !h, while consumption bundles by xh(s), for h in G0; G1, s = �; �. We denote the prices

of the l commodities as the vector pc(s).

The timing of the model is the same as in Cass and Shell (1983). After their birth in period 0,

the agents of generation G0 are allowed to trade in Arrow securities, which are contingent on the

realization of the extrinsic random variable. The amount of the s-contingent security bought - sold,

if negative - by agent h in G0 is bh(s) and its price is pb(s). At the end of period 0, before the

birth of generation G1, sunspot activity is observed (that is, people realize which state of nature has

actually occurred). When both generations are alive in period 1, they trade in spot commodities

and, �nally, consume their bundles. The main feature of this scheme is that participation in the

securities market is restricted to the agents in G0. As is well known, with completely extrinsic

uncertainty, if an equilibrium exists in which xh(�) 6= xh(�) for some h, then sunspots matter.

1.3 Do Sunspots Matter under MMRC and MMC?

Suppose that, for given fundamentals, the economy described above admits two distinct Walrasian

equilibria, and that the �extrinsic uncertainty�the agents in G0 perceive corresponds to these two

equilibria. We then index them as equilibrium ���with quantities and prices respectively given by

x�h(�); p
�
c(�), and equilibrium `��with quantities and prices respectively given by x�h(�); p

�
c(�), for

h in G0,G1.



8 CHAPTER 1. DO SUNSPOTS MATTER UNDER COMPLETE IGNORANCE?

As we have argued above, agents in G0 do not know the probability distribution over the two

states of nature �,�, and their choice under �complete ignorance� is alternatively driven by the

MMRC and the MMC. Let us verify whether any other - sunspot-driven - equilibrium exists in this

economy. Since G1-type agents make their consumption choices after �extrinsic uncertainty�has

been resolved, they simply maximize their utility function under the usual budget constraints. On

the contrary, G0- agents can trade in Arrow securities (only) among each others and, then, must

decide whether and, possibly, which amount bh(s) of assets to buy/sell in period 0, before sunspot

activity is revealed.

Let us de�ne the state-contingent pay-o¤s among which agent h in G0 can choose. If agent h

selects her optimal amount bh(�) of Arrow security for a given price vector pb(�), the pay-o¤ she

obtains can be summarized by the following indirect utility functions:

v�h = vh [pc(�); pc(�)!h + bh(�)] if � occurs and:

v�h = vh [pc(�); pc(�)!h + bh(�)] if � occurs.

where:

�!hpc(�) � bh(�) = �bh(�)
pb(�)

pb(�)
� pc(�)!h

pb(�)

pb(�)
.

In particular, if this agent decides to employ all her income in buying a positive amount of

�-contingent security at the price pb(�), her return is4 :

v
�(max)
h = vh

�
pc(�); !h

�
pc(�) +

pb(�)

pb(�)
pc(�)

��
if state � occurs and

vh[pc(�); 0]

4These functions are determined by solving, for s; t = �; � and s 6= t the following maximum problem:
max
xh

U [xh(s)]

s.t. pc(s)xh(s) = pc(s)!h + bh(s);

s.t. bh(s) = pc(t)!h
pb(t)

pb(s)
:
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if state � occurs. Analogously, if she decides to employ all her income in buying a positive

amount of �-contingent security at the price pb(�), her return is:

v
�(max)
h = vh

�
pc(�); !h

�
pc(�) +

pb(�)

pb(�)
pc(�)

��
if state � occurs and

vh[pc(�); 0]

if state � occurs.

Finally, if agent h in G0 does not trade in assets, the utilities she gains are those associated with

the two deterministic equilibria: Uh[x�h(�)] if � occurs and Uh[x
�
h(�)] if � occurs.

It is now possible to de�ne the expression vs(max)h � vsh as the generic regret associated with

an amount bh(�) of Arrow security for agent h when state s has occurred. In a general equilib-

rium framework the optimization under uncertainty via the MMRC requires that all the regrets be

equalized across all states of nature. With only two states the following �optimum condition�must

hold5 :

v
�(max)
h � v�h = v

�(max)
h � v�h (3)

Analogously the �optimum condition�under MMC requires that the minima be directly equalized

across all states of nature. With only two states, the condition is:

v�h = v
�
h (4)

We can now state the two following propositions.

Proposition 2 If agents in G0 make use of the minimax regret criterion, a unique sunspot equilib-

rium exists in the economy. The vector of the equilibrium prices of the Arrow securities [p�b(�); p
�
b(�)]

5Just to give an intution suppose that, for a given price, agent h has bought an amount of Arrow security ~bh(�) > 0

such that v�(max)h � ~v�h > v
�(max)
h � ~v�h . Since what matters under the MMRC is the maximum regret across the

states, in this situation the agent would �nd it pro�table to start selling that security until the two regrets would
converge towards each other. Only when (3) holds exactly, there is no more incentive to trade in assets, since the
maximum regret is at its minimum.
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is such that no trade in Arrow securities takes place in equilibrium, i.e. bh(s) = 0. Moreover, the

prices of the l commodities, [p�c(�); p
�
c(�)], and the consumption allocations, x

�
h = [x

�
h(�);x

�
h(�)] for

h in G0; G1, are those corresponding to the two Walrasian equilibria.

Proof. We prove our result in two stages. In the �rst we show that, if an equilibrium exists, it must

be characterized by no trade in Arrow securities. In the second this equilibrium is pinned down and

the equilibrium prices of Arrow securities are found.

1. By de�nition of Arrow securities, an equilibrium must be characterized by:X
h2G0

bh(s) = 0 for s = �; � (5)

Moreover, since agents in G0 are identical, then in equilibrium all individuals choose the same

unique optimal portfolio. Hence:

bh(s) = �b(s) 8h in G0: (6)

Eq.s (5 ) and (6) imply bh(s) = 0. Then, if an equilibrium exists, it must be characterized by no

trade in Arrow securities.

2. Indeed, the unique consumption allocation compatible with no trade in Arrow securities is the

pair x�h = [x
�
h(�);x

�
h(�)]. Now we prove that a vector of Arrow securities�prices p

�
b = [p

�
b(�); p

�
b(�)]

always exists, which renders the vectors of prices p� = [p�c(�); p
�
c(�); p

�
b(�); p

�
b(�)] and of allocations

x�h = [x
�
h(�);x

�
h(�)] for h in G0; G1 the unique sunspot equilibrium of our economy.

Since agents apply the MMRC, and since in equilibrium it holds pb(�) + pb(�) = 1, Arrow

securities�prices are determined via the following system:8>><>>:
v
�(max)
h � Uh[x�h(�)] = v

�(max)
h � Uh[x�h(�)]

pb(�) + pb(�) = 1

(7)

The �rst equation of system (7) equalizes the regret associated with the consumption bundle

x�(�) to the one associated with x�(�). It is a special case of the �optimum condition�under MMRC
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(equation (3)), obtained when bh(s) = 0.

Continuity and monotonicity of the utility function Uh(�), for h in G0, constitute su¢ cient

conditions for the existence of a solution 0 < p�b(s) < 1, for s = �; �; in system (7). In fact (for a

graphical intuition of this result see �gure 1):

lim
pb(�)!0

v
�(max)
h � Uh[x�h(�)] > 0; lim

pb(�)!0
v
�(max)
h � Uh[x�h(�)] = 0

and:

lim
pb(�)!1

v
�(max)
h � Uh[x�h(�)] = 0; lim

pb(�)!1
v
�(max)
h � Uh[x�h(�)] > 0

Since it generically holds x�h(�) 6= x�h(�), the equilibrium is characterized by sunspot activity.

Proposition 3 If agents make use of the maxmin return criterion, then sunspots do not matter.

Proof. The �rst part of the proof is exactly the same as the one in the previous proposition, in

which we have shown that in equilibrium no trade in Arrow securities can take place (bh(s) = 0).

However, since in general U [x�h(�)] 6= U [x�h(�)], x� = [x�(�);x�(�)] cannot be the optimal solution

for this decision rule (recall equation (4)). In fact, for every vector of asset prices p0b, G0-agents

would be better o¤ by buying an amount of securities b0h(�) 6= 0 such that:8>><>>:
vh [pc(�); pc(�)!h + b

0
h(�)] = vh

�
pc(�); pc(�)!h � b0h(�)

p0b(�)

p0b(�)

�
pb(�) + pb(�) = 1

(8)

This con�guration is however not sustainable in equilibrium, since it would imply trade in asset

markets, while it must necessarily be b�h(s) = 0 8h in G0. Hence a sunspot equilibrium does not

exist.
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Chapter 2

Uncertainty Averse Bank Runners

2.1 Introduction

Starting from the seminal Diamond and Dybvig�s (1983) paper (D-D henceforth), a stream of liter-

ature has developed which looks at bank runs as phenomena originating from a coordination failure

driven by an extrinsic random variable, namely a �sunspot�. One of the most recent and important

contributions to the topic is Peck and Shell (2003) which, along the lines of the �classical�D-D,

designs a model admitting a multiplicity of equilibria and further develops the issue of the selection

among them. A signi�cant departure of this framework from D-D, tracing back to Wallace (1988),

is the broadening of the set of feasible contractual arrangements from the �simple contracting�(so-

called by Green and Lin (2000)) considered by D-D to a class of banking mechanisms that allow for

suspension schemes.

In what follows we will refer in particular to Peck and Shell (2003), whose model is modi�ed

0This chapter is drawn from a joint paper with Guido Cozzi.

13
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in order to encompass a depositor with uncertain beliefs on her position in the queue in the case a

bank run occurs. Uncertainty is to be intended in the sense, �rst given by Knight (1921), that the

information of each depositor is too vague to be represented by an objective probability distribution.

It is then assumed that, when each depositor expects a (rarely observed) run to occur, she is

no longer able to evaluate correctly the probability distribution of her position number in the

queue. The rationale for introducing such an assumption can be justi�ed as follows: since the

bank, in �nding the optimal contract, is allowed to assign di¤erent pay-o¤s across depositors as

a function of their place in line, when a run occurs each depositor might feel penalized, in terms

of insu¢ cient information about her personal �running skills�with respect to her �competitors�, to

gain the relatively highest pay-o¤s. In particular, if partial suspension of convertibility characterizes

the optimal mechanism (Wallace (1990)), the patient depositor might reasonably be afraid of being

located among the last positions in the queue and, as we will clarify below, might be eventually

discouraged from running.

Our formalization of the depositor�s attitude towards uncertainty is inspired by the (multi-

prior) maximin expected utility (MEU) theory axiomatized by Gilboa and Schmeidler (1989) (see in

particular Subsection 0.3.2). The application of this decision rule to our framework leads to assume

a depositor who maximizes her expected pay-o¤with respect to the binary choice -whether or not to

withdraw -, while selecting the worst probability distribution (over her position in the queue) among

all the admissible ones. As we will show in the next Section, since in a mechanism design approach

pay-o¤s generally vary as a function of the position number, uncertainty aversion may alter the

agent�s withdrawal strategy. Our proposition states that, in a MEU approach to decision-making

under uncertainty, there always exists a set of minimizing prior beliefs which makes the bank run

equilibrium disappear. Interestingly, this result is obtained independently of the bank�s solution
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to the problem of choosing the optimal mechanism1 . Consequently we suggest that �suspension

schemes�are worthy, not only because they improve risk-sharing (Wallace (1990)), but also because

they may undermine panic-driven bank runs in a potentially general class of frameworks.

2.2 Aversion to Uncertainty and Propensity to Run

The banking model developed in Peck and Shell (2003) is characterized by aggregate uncertainty

on the distribution of the agent�s type and by the observance of the so-called sequential service

constraint (which forces the bank to deal with customers sequentially). There are three periods, and

N potential depositors, � being the number of impatients and N �� that of patients. Each of them

is endowed with y units of consumption in period 0 regardless of type. Impatient agents evaluate

utility of period 1 only, through a function u(c1), while patient agents, who are allowed to costlessly

store consumption across periods, evaluate utility of both periods 1 and 2 through the function

v(c1 + c2), where c1 and c2 represent respectively consumption received in periods 1 and 2: Both

functions are assumed to be strictly increasing, concave, and twice continuously di¤erentiable. The

bank, whose target is to maximize the ex-ante expected utility of consumers, knows the probability

distribution over all possible realizations of types [f(�) for � = 0; 1; :::; N ] and, as usual, is not able

to recognize the agent�s type. As far as technology is concerned, 1 unit of consumption invested in

period 0 yields R units in period 2 and 1 unit in period 1. As a consequence of the technology and

preference assumptions, in autarchy patient depositors strictly prefer to consume in period 2.

In Peck and Shell (2003) an essential distinction is made between pre- and post-deposit game.

In the latter consumers are assumed to have already deposited their endowments and, after having

1Notice that the bank�s problem of �nding the optimal contract slightly changes when uncertainty aversion is
introduced. The bank must in fact take into account this uncertainty aversion in the incentive compatibility constraint
when all depositors are impatient. The validity of our proposition is however not a¤ected by this change.
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learnt their type (at the beginning of period 1), must only decide whether to withdraw in period

1 or in period 2. The pre-deposit game also encompasses the agent�s choice between deposit and

autarchy: this choice is indeed not trivial since, for example, the agent would decide not to deposit

if she knew that a bank run would occur with probability 1. Here we are only concerned with the

post-deposit game.

The best solution to the post-deposit game in Peck and Shell (2003) is obtained by maximizing

total welfare, de�ned as the sum of the utilities of the two types weighted with the probabilities

of all possible realizations, subject to the resource constraint and to an incentive compatibility

constraint (ICC) stating that patient depositors, in comparing the expected pay-o¤ associated with

the �truth telling�strategy (withdrawing in period 2) with that associated with the strategy of �lying�

(withdrawing in period 1), must prefer to tell the truth. The solution to the problem reveals that,

even if the ICC holds, the economy may be subject to a bank run. The no-bankrun condition (NBC)

that would be violated in this case can be written as follows:

1

N

NX
z=1

v(c1(z)) � v
 "
Ny �

N�1X
z=1

c1(z)

#
R

!
(NBC)

where z refers to the depositor�s position in the queue. This condition states that, even though

the patient depositor had the belief that any other agent would be running, she would be however

interested in waiting until period 2.

Our departure from this framework is concerned with the probability distribution with which

each agent is assumed to be endowed in order to evaluate her position in the queue. In Peck and

Shell (2003) the agent evaluates each place in line as equally likely independently of whether or not

a bank run is expected. Conversely, for the reasons stated in the introduction we allow probabilities
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to vary across position numbers whenever depositors believe that such an unusual event as a run

is about to occur. Following the Gilboa and Schmeidler�s (1989) MEU theory, we further assume

that, when a bank run is expected:

1. the agent�s subjective belief about her own position in the queue is modeled as a set of additive

probability measures (multiple prior belief);

2. the agent�s choice behavior is represented as a maxmin strategy, which drives her to maximize

her utility with respect to a binary choice - whether to withdraw in period 1 or 2 - and, at the same

time, to �nd the additive probability distribution (over her position number) which minimizes the

pay-o¤ associated with withdrawing in period 1. We can now state the following:

Proposition 4 For the post-deposit game there exists a positive measure set of minimizing priors

which makes the bank run equilibrium disappear.

Proof. In the NBC the standard probability distribution over all positions in the queue can be

described as:

qz =
1

N
8z = 1; :::; N

where z stands for the position and qz for the probability of being the z-th in the queue. Now

replace it with the following set of priors:

~qz = [0 + "; 1� "] for " > 0 and 8z = 1; :::; N , (1)

and suppose -w.l.o.g., as it will be argued below - that �weak�PSC characterizes the optimal

solution:

c1(1) � c1(2) � ::: � c1(N � 1) � Ny �
N�1P
z=1

c1(z):

The relation above identi�es two possible cases:

1. The optimal solution is:

c1(1) = c1(2) = ::: = c1(N � 1) = Ny �
N�1P
z=1

c1(z) (2)
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In this case the minimizing distribution is anyone among all possible additive distributions

belonging to the set de�ned in (1). Then the NBC becomes:

v

�
Ny �

N�1P
z=1

c1(z)

�
< v

��
Ny �

N�1P
z=1

c1(z)

�
R

�
,

which is always satis�ed 8R > 0 and no bank run can occur. Notice that (2) corresponds to the

�autarchic solution�.

2. In the optimal solution, at least one pay-o¤ is strictly greater than the others. Suppose (w.

l. o. g.) that:

c1(1) � c1(2) � ::: � c1(N � 1) > Ny �
N�1P
z=1

c1(z):

In this case the minimizing prior with respect to (1) would be:

[qz = " 8z = 1; :::; N � 1; qN = 1� (N � 1)"]

and the NBC becomes:

N�1P
z=1

"v(c1(z)) + [1� (N � 1)"] v
�
Ny �

N�1P
z=1

c1(z)

�
< v

��
Ny �

N�1P
z=1

c1(z)

�
R

�
We argue that, 8R > 0, there is at least an " > 0 that satis�es the condition stated above. The

threshold value of " below which the bank run disappears is:

0 < " =

v

��
Ny �

N�1P
z=1

c1(z)

�
R

�
� v

�
Ny �

N�1P
z=1

c1(z)

�
N�1P
z=1

v(c1(z))� (N � 1)v
�
Ny �

N�1P
z=1

c1(z)

�
Notice also that the assumption of PSC has been made w.l.o.g. Indeed suppose that the pay-o¤

associated with the last position is not the minimum because there exists:

v(c1(i)) < v

�
Ny �

N�1P
z=1

c1(z)

�
for some i 2 [1; N � 1];

then it will also be:

v(c1(i)) < v

�
Ny �

N�1P
z=1

c1(z)

�
< v

��
Ny �

N�1P
z=1

c1(z)

�
R

�
and the reasoning of the proof can be repeated identically.
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�He [the entrepreneur] has the capacity to see things in a way, which afterwards proves

to be true, although it cannot be proven at the time" (Joseph Alois Schumpeter, 1934)
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Chapter 3

Is Strong Uncertainty Harmful for

Schumpeterian Growth?

3.1 Introduction

In Schumpeterian growth theory (SGT) the Schumpeter�s view of economic development, as spurred

by incessant R&D races aimed at gaining monopoly pro�ts, is incorporated into an Arrow-Debreu

dynamic general equilibrium framework with �measurable uncertainty�(risk). The assumption of

a perfectly assessable investment horizon - that is, the idea that transparent and well-organized

�nancial markets allow savers to �nance R&D activity in the light of an expected discounted value

of future returns �revealed�by an e¢ cient stock market - is standard along growth models, such

as Romer (1990), Grossman and Helpman (1991), Aghion and Howitt (1992), Segerstrom (1998),

0This chapter is drawn from a joint paper with Guido Cozzi.
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Howitt (1999), Aghion et al. (2001).

In this chapter we claim that R&D investment decisions are actually taken under conditions

of strict uncertainty on their possible returns. We then remove the assumption of a �rigorously

calculable future�and provide a �rst attempt to introduce formally strict uncertainty on the process

describing the evolution of innovation. This idea is close to the Schumpeter�s original view of the

innovation process as a process brought about by �resourceful�entrepreneurs and characterized by

some intrinsically unpredictable aspect (Schumpeter (1934) and (1939)).

According to SGT the arrival of innovation in the economy follows a Poisson process. Also, the

parameter of this process, representing the ��ow probability�of innovation, is perfectly known by

the R&D investment decision-maker (DM). In particular, in the framework developed by Aghion

and Howitt (1992), the value of this parameter named �, a¤ects both the problem of whether or

not to invest in R&D (whose solution is embodied by the �arbitrage equation�), and the problem of

whether to invest in risk-free assets or in shares of monopolistic �rms (whose solution is embodied

by the �asset equation�).

In this framework we assume that investors know neither the exact value of the parameter � nor

a prior distribution over the set of its potential values. Hence, they face the two decision problems

sketched out above under conditions of complete ignorance and are assumed to �nd their optimal

choice in each of them via four alternative decision criteria (see Luce and Rai¤a (1958) and, for a

brief review see chapter 0 of this book): the �maximin return criterion�(MMC), the �minimax regret

criterion�(MMRC), the �optimism-pessimism index criterion�(OPIC) and the Laplace�s �principle of

insu¢ cient reason�(PIR). The equilibrium R&D e¤orts in steady-state are then determined under

all these decision rules, and compared with each other and with the standard solution of Aghion

and Howitt. In particular, we prove that the same amount of R&D investments is carried out under



3.2. A REMINDER OF THE MODEL 25

MMRC and PIR. Also, this amount is higher than the one associated with MMC. Finally, R&D

investments under OPIC can never be lower than those carried out under MMC.

This chapter represents a �rts attempt to introduce formally, into a standard Schumpeterian

framework, investors�ignorance about the returns associated with their R&D investments. Ignorance

is here represented as lack of information about the exact arrival rate of innovation.

The rest of the chapter is organized as follows. In the next Section we provide a reminder of

the model of Aghion and Howitt (1992). In Section 3.3 we apply the four standard decision rules

under complete ignorance to the R&D investment decision problems, determine the steady-state

equilibrium R&D e¤orts under each of them and provide comparative statics analysis. In Section

3.4 we provide the welfare analysis, while in Section 3.5 we conclude with some remarks.

3.2 A Reminder of the Model

In this Section we brie�y recall the basic framework developed in Aghion and Howitt (1992). Time is

continuous and there exists a continuum of in�nitely lived households with identical intertemporally

additive preferences, with r representing the rate of time preference. Since instantaneous utility

is assumed to be linear and there are perfect capital markets, then r also turns out to be the

equilibrium interest rate. Households are endowed with �ow units of skilled or unskilled labor time

and are assumed to supply them inelastically in a perfectly competitive market.

There is a perfectly competitive �nal sector, in which output is produced according to a constant

returns to scale (CRS) technology. For simplicity, we assume a Cobb-Douglas speci�cation:

yt = Atx
�
tN

1��
t = Atx

�
t 0 < � < 1

where y is �nal output, x is the intermediate good and N , normalized to 1, is the unskilled labor.

A is the productivity parameter, which is assumed to evolve according to the following rule:
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At+1 = At for  > 1 and t = 0; 1; 2:::

The subscript t does not refer to calendar time but to the generation of the intermediate product

that is being used. Whenever a new intermediate product is introduced into the market, the economy

jumps of . The intermediate good x is produced through a one-to-one technology from skilled labor

(L): The price of the �nal output is assumed as the numerarie: p(yt) = 1:

Before describing the innovation process, let us illustrate what happens when a new quality is

discovered: as soon as a new intermediate product is introduced, it is automatically protected by

a perfect and in�nitely lived patent, which allows the inventor (or whoever buys the blueprint) to

temporarily monopolize the market. With the assumption that innovations are drastic, monopoly

pro�ts can be easily obtained from the pro�t maximizing condition:

max
xt

�
�t = At�x

��1
t xt � xtwt

�
where wt is the skilled labor wage. This maximization gives the optimal value of xt as:

xt =

�
wt

At�
2

� 1
1��

:

Maximum pro�ts can then be written as:

�t =
1� �
�
xtwt: (1)

The innovation process takes place because R&D �rms employ, in a perfectly competitive market,

an amount n of skilled labor in order to gain a probability of discovering the next vintage. Since

skilled labor can switch from the research sector to the intermediate sector and viceversa, the skilled

labor market clearing condition can be written as:

L = xt + nt

where xt and nt represent labor employed respectively in the intermediate and the research

sectors. We also de�ne Vt as the market value of the monopolistic �rm producing vintage t.

According to the standard Schumpeterian literature, the arrival of innovation in the economy



3.2. A REMINDER OF THE MODEL 27

is assumed to follow a Poisson Process. The parameter � of this process, representing the �ow

probability of an innovation, is known by the investor. Because of the CRS in the research sector,

the number of R&D �rms is indeterminate. In equilibrium expected bene�ts from a unit of R&D

e¤ort (�Vt+1) must equal its cost (wt). The equation

�Vt+1 = wt (2)

is usually called the �research arbitrage equation�of the model. Furthermore, because instanta-

neous utilities are linear, agents must be indi¤erent between investing in shares of the incumbents

and investing in risk-free assets. Then the value Vt must satisfy the following �asset equation�:

rVt = �t � �ntVt

where rVt is the return from investing in risk-free shares, �t is the �ow of pro�ts corresponding

to vintage t, while �ntVt is the expected capital loss due to the introduction of vintage t + 1 and

embodies the Schumpeter�s idea of the �cretive destruction e¤ect� of any innovation. The asset

equation gives the expression for Vt as:

Vt =
�t

r + �nt
; (3)

stating that the market value of the monopolist �rm is the �ow of pro�ts that it will produce,

discounted at the obsolescence-adjusted interest rate. We are now ready to modify this basic set-

up so as to incorporate the idea that investors are completely ignorant about the arrival rate of

innovation.
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3.3 The New Equilibrium R&D E¤orts under Complete Ig-

norance

Assume that the parameter � is strictly uncertain, in the sense that the investors know neither its

exact value nor a probability distribution over all possible values it can take. The unique assumption

we pose on the investors�knowledge is that they consider some �particularly low�, as well as some

�particularly high�values of �; as unreasonable and, hence, that they can exclude them from their

decision problem. In other words, we require decision makers to know the set of states of nature

which potentially occur, and to ignore totally the probability of realization of each of them. We

then state the following assumption, which will hold throughout.

Assumption. Investors exclude all values of � below some lower threshold m 2 ]0;1[ and all

values above some upper threshold M > m; that is to say, they believe that � 2 [m;M ]. Moreover,

they are not provided with any probability distribution over this set of values.

In the light of this assumption, two decision problems stated in Section 3 must be reconsidered.

The former is the problem of whether or not to devote investments in R&D and the latter is the

problem of whether to invest in shares of the incumbents or in risk-free assets. We will study them

in order under the four criteria introduced in Section 2.

3.3.1 Problem 1 (The Arbitrage Equation)

Assume that the economy is in t1 . The DM has to decide whether or not to invest in R&D by

comparing the pro�tability associated with these two alternatives, as the parameter � varies from

m toM . Then there are two possible acts, �R&D investment�and �no R&D investment�, and the set

1That is, assume that generation t of the intermediate good is being produced.
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of states of nature is the interval [m;M ]. The pay-o¤s associated with each pair act/state of nature

are as follows. If the investor does not carry out any R&D investment, her pay-o¤ will always be

null, independently of the true state of nature. If she does, the cost of each R&D investment unit is

always the skilled labor wage (wt), while expected bene�ts (�Vt+1) depend on the strictly uncertain

parameter � 2 [m;M ]. Hence she reckons that, for each unit of skilled labor employed, her pay-o¤

from R&D investment is �Vt+1 � wt for2 � 2 [m;M ].

Given this decision problem, let us �rst assume that, whenever facing non-probabilistic uncer-

tainty, the DM makes use of the maximin return criterion in order to �nd her optimal choice. Then,

for each act, the DM only takes into account the pay-o¤ associated with the worst state inside

the set [m;M ], and selects the act for which this pay-o¤ is maximum. Hence, she compares a null

pay-o¤ (associated with the act �no R&D investment�) with the amount mVt+1 � wt, representing

the worst pay-o¤ associated with the act �R&D investment�, and corresponding to the state � = m.

If mVt+1 � wt < 0, she will not invest in R&D, while if mVt+1 � wt > 0, then R&D investment

will be in�nite. Equilibrium is reached when the arbitrage condition mVt+1 � wt = 0 holds. This

condition, which identi�es a situation of indi¤erence as to whether or not to invest in R&D, can

equivalently be written as:

wt = mVt+1: (4)

Alternatively, if the DM makes her optimal choice via the minimax regret criterion, then her

purpose is to choose the act which minimizes the maximum regret for � 2 [m;M ]. As stated by the

2Clearly � is assumed to take all real values in the interval [m;M ] but, for the sake of sim-
plicity, assume for a moment that � can only take n values between m and M , and that
�1 = m and �n = M: The decision problem can now be formalized via the following matrix:
Acts/States �1 = m �2 ::: �i ::: �n =M
R&D mVt+1 � wt �2Vt+1 � wt ::: �iVt+1 � wt ::: MVt+1 � wt

No R&D 0 0 ::: 0 ::: 0
where the values of � have been arranged in increasing order: �1 < �2 < ::: < �i < ::: < �n:
This formalization with discrete states of nature has only been provided to give a simple intuition of the decision

problem we have been illustrating.
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MMRC (see Section 2), for each act the investor only takes into account the pay-o¤ associated with

the state for which the regret is maximized. The maximum regret associated with the act �R&D

investment�is wt �mVt+1 and is attained when � = m, while the maximum regret associated with

the act �no R&D investment�is MVt+1�wt and is attained when � =M: Afterwards she compares

these maximum regrets and eventually picks up the act associated with the smallest one. Hence, if

wt �mVt+1 > MVt+1 � wt, she will not carry out R&D, while if wt �mVt+1 < MVt+1 � wt, then

R&D investment will be in�nite. In equilibrium the arbitrage condition wt �mVt+1 =MVt+1 �wt

must hold, which can also be written as:

wt =
m+M

2
Vt+1: (5)

Remark 5 Notice that, with the minimax regret criterion, all intermediate states of nature (that

is, all � 2 ]m;M [) turn out to be irrelevant, since they do never identify a situation of maximum

regret for neither of the two acts. Maximum regret is instead identi�ed by the two extreme cases of

� = m and � =M:

If the optimism-pessimism index is the criterion adopted, the DM evaluates her expected returns

from the act �R&D investment�by computing a �-weighted average of the security level (mVt+1�wt)

and the optimism level (MVt+1 � wt), that is, [�m+ (1� �)M ]Vt+1 � wt, where 0 � � � 1 is a

parameter roughly measuring her �degree of pessimism�. By comparing this pay-o¤ with the null

pay-o¤ associated with �no R&D investment�, indi¤erence as to whether or not to invest in R&D

can then be expressed via the following arbitrage equation:

wt = [�m+ (1� �)M ]Vt+1: (6)

Finally, if the principle of insu¢ cient reason guides the investor�s choice, then this investor

considers every state � 2 [m;M ] as equally likely and, hence, her expected bene�ts from investing
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in R&D to be equal to3 m+M
2 Vt+1 � wt. As under MMRC, the arbitrage equation under PIR is

then given by equation (5).

3.3.2 Problem 2 (The Market Value of Incumbents)

As in Aghion and Howitt (1992), in order to derive the expression for Vt, we have to address the

agent�s problem of whether to invest in risk-free assets or in shares of current monopolists. This

decision problem must also be revised in order to take into account the strict uncertainty associated

with the parameter � and the decision rule which is adopted in the face of uncertainty. There are

two possible acts, investing in risk-free assets or in shares of the monopolistic �rms, and an in�nite

and bounded set of states of nature � 2 [m;M ]: If the investor decides to buy risk-free assets, her

return will always be rVt, independently of the productivity of the research technology. On the other

hand, if she invests in shares of the incumbents, then her pay-o¤ will be �t � �ntVt, which clearly

depends on the uncertain parameter4 � 2 [m;M ]. Notice that, since the parameter � represents the

productivity of the R&D aimed at discovering vintage t + 1, the risky asset return is a decreasing

function of �:

An investor adopting the MMC compares the worst pay-o¤s associated with each act, and

eventually selects the act corresponding to the best one. In comparing the worst pay-o¤s, rVt for

choosing risk-free assets and �t � MntVt for choosing the incumbent�s shares, indi¤erence as to

whether to invest in shares or in risk-free assets is reached when these values equalize5 :

3Expected bene�ts are obtained via the following integral: 1
M�m

MR
m
�Vt+1d�� wt = m+M

2
Vt+1 � wt:

4As before, for the sake of simplicity we can imagine that � takes a �nite set of values, arranged in increasing
order: �1 = m < �2 < ::: < �i < ::: < �n =M;
and formalize the decision problem via the following matrix:

Acts/States �1 = m �2 ::: �i ::: �n =M
Shares �t �mntVt �t � �2ntVt ::: �t � �intVt ::: �t �MntVt

Risk-Free Assets rVt rVt ::: rVt ::: rVt
5Remember that, by assumption, the DM is risk neutral.
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rVt = �t �MntVt:

From the expression above we determine the market value of the monopolistic �rm producing

vintage t as:

Vt =
�t

r +Mnt
(7)

If the investor makes use of the MMRC, then for each act she compares the two maximum

regrets, as the state of nature � varies from m to M , and singles out the act for which this value is

minimum. If she decides to invest in risk-free assets, then her maximum regret is �t�mntVt� rVt,

which is associated with the state � = m, that is, a minimal �creative destruction e¤ect�. On the

other hand, if she decides to invest in shares, her maximum regret is rVt � (�t �MntVt), which

is associated with � = M : in this case, the �creative destruction e¤ect� is at its maximum. In

equilibrium it must be:

�t �mntVt � rVt = rVt � �t +MntVt;

which gives the following expression for Vt:

Vt =
�t

r + m+M
2 nt

: (8)

The same consideration made in remark 1 holds true here.

When the OPIC is the investor�s decision criterion, the pay-o¤ associated with investing in

shares is given by the �-weighted average of the security level (�t�MntVt) and the optimism level6

(�t � mntVt), while the one corresponding to investing in risk-free assets is always rVt. Then in

equilibrium it must be:

rVt = �t � [�M + (1� �)m]ntVt;

and hence:

6Notice that, as opposite to problem 1, now m and M are respectively associated with the optimism level and the
security level.
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Vt =
�t

r + [�M + (1� �)m]nt
: (9)

Finally, when the principle of insu¢ cient reason is used, then investing in shares brings about

expected returns equal to �t� m+M
2 ntVt, while investing in risk-free assets always brings about rVt.

As in the case of MMRC, equilibrium is then described by equation (8).

3.3.3 The Steady-State Equilibrium

In this Subsection we focus on the steady-state equilibrium of the model, determine and compare

the equilibrium R&D e¤orts under all the four decision criteria introduced above. Consider �rst the

case of the maximin return criterion. The market value of the monopolistic �rm producing vintage

t+ 1 is:

Vt+1 =
�t+1

r +Mnt+1
;

where

�t+1 = �t = 
1� �
�
xtwt,

After some manipulations7 we obtain the system, composed of the arbitrage equation and the

labor market-clearing condition, which describes the evolution of this economy:8>><>>:
wt = m

 1��� xtwt

r +Mnt+1

L = xt + nt

Turning to the steady-state, where nt = nt+1, we can rewrite this system as:8>><>>:
w = m

 1��� xw

r +Mn

L = x+ n

(10)

from which we can easily determine the equilibrium value of the research e¤ort:

n� =
m 1��

� L� r
M + m 1��

�

:

7We have substituted for Vt+1 given above into (4).
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We can proceed exactly through the same steps in order to obtain the R&D e¤orts associated

with the three other decision rules. Under the MMRC, we have:

Vt+1 =
�t+1

r + m+M
2 nt+1

;

and, substituting for �t+1, we can write the system describing the evolution of this economy as:8>><>>:
wt =

m+M
2

 1��� xtwt

r + m+M
2 nt+1

L = xt + nt

:

In steady-state, where nt = nt+1, this system becomes:8>><>>:
w = m+M

2

 1��� xw

r + m+M
2 n

L = x+ n

(11)

The equilibrium value of the research e¤ort under the MMRC is then:

n�� =
m+M2

1��
� L� r

m+M
2 + m+M2

1��
�

:

Under the optimism-pessimism index criterion, the steady-state system is instead as follows:8>><>>:
w = [�m+ (1� �)M ]

 1��� xw

r + [�M + (1� �)m]n

L = x+ n

(12)

and gives the following equilibrium R&D e¤ort:

n��� =
[�m+ (1� �)M ] 1��� L� r

[�M + (1� �)m] + [�m+ (1� �)M ] 1���
:

Finally, under the principle of insu¢ cient reason, the steady-state system coincides with system

(11) and, hence, the equilibrium R&D e¤orts are:

n���� � n�� =
m+M2

1��
� L� r

m+M
2 + m+M2

1��
�

First notice that n�� > n�, that is, the equilibrium R&D investments are higher under the

MMRC (or PIR) than under the MMC. Even though it is not apparent by looking at the two

expressions for n� and n��, this result can be easily veri�ed via the following equations, derived

respectively from systems (10) and (11):

1 =
m 1��� (L� n�)

r +Mn�
(13)
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1 =
m+M
2  1��� (L� n��)
r + m+M

2 n��
(14)

If n� were equal to n��, then we could unambiguosly conclude that the right-hand side of (13)

would be lower than the right-hand side of (14) (given m < M). Yet, since they both must equal 1,

and since both the right-hand sides are decreasing functions of n, it must be n�� > n�.

Moreover, from the de�nition of the MMC and OPIC, it follows trivially: n��� > n� 8 0 � � < 1

and n��� = n� if and only � = 1, that is, if the degree of pessimism is maximum. Obviously, whether

n��� S n�� crucially depends on the parameter �:

Finally all these values closely resemble the one found by Aghion and Howitt (1992) in their

Cobb-Douglas example:

n(AH) =
� 1��� L� r
�+ � 1���

;

the di¤erence lying in the fact that, in all our equilibrium solutions, some function of m and/or

of M replaces the (unknown) parameter �. In particular, in n��(= n����) the expression m+M
2

exactly replaces �: hence, if investors are uncertain about the arrival rate of innovation, and if they

face non-probabilistic uncertainty via MMRC (or PIR), these investors act as if � = m+M
2 :

Comparative statics analysis for , L, � and r is perfectly in line with the Aghion-Howitt�s

(1992) results: both a higher quality jump  and a larger amount of skilled labor force L raise the

equilibrium R&D e¤ort n (under whichever criterion it is determined), while a higher rate of interest

r, and a higher value of � (inversely measuring the degree of market power) lower it. The relationship

between the arrival rate of innovation and n is instead less immediate. As in the Aghion-Howitt�s

(1992) model there are two con�icting e¤ects. On the one hand, an increase in the arrival rate makes

the research activity more productive for a given level of employment, thus stimulating the R&D

e¤ort. On the other hand, this increase exacerbates the creative destruction e¤ect, reducing the

R&D e¤ort. While in Aghion-Howitt (1992), the former e¤ect dominates the latter (making then
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n(AH) be a positive function of �), the whole e¤ect here depends on the decision rule the investors

are assumed to adopt. If m and/or M increase, then n��(= n����) will unambiguosly increase, since

what ultimately matters in its expression is the average value m+M
2 . The same relationship does

not hold for n� (and by continuity for n���): it is easy to show that n� is an increasing function of m

(which is responsible for the positive �productivity e¤ect�), and a decreasing function of M (which

is responsible for the negative �creative destruction e¤ect�).

3.4 Welfare Analysis

In this Section we compare, for each decision rule, the laissez-faire equilibrium R&D e¤ort with

the one chosen by a social planner seeking to maximize the welfare of the representative agent.

Such welfare, called Ut, is the valuation, based on the risk free rate of time preference r, of the

consumption available at all future dates. The reasoning underlying the derivation of Ut closely

resembles the one carried out to derive Vt in (3), with two important di¤ererences: �rst, as the

reader recalls from Section 3, in determining the market value of the monopolistic �rm we had to

bear in mind that the shareholders are only interested in the �ow of pro�ts (�t); in contrast, here

consumers care about the current expected value of their entire consumption prospect (given by the

�nal product yt, as a sum of both wages and pro�ts). Ut can actually be interpreted as the value

of an asset which gives to the owner the right to receive, as a return, the whole national income.

Second, in deriving (3) we saw that the arrival of the next innovation exercises a negative e¤ect on

the market value of the incumbent (because of its �creative destruction�e¤ect). Conversely, from a

social perspective the arrival of the successive innovation enhances unambiguously the consumers�

welfare, which jumps to Ut+1 = Ut, with a net collective gain equal to Ut+1 � Ut = ( � 1)Ut.

This social gain occurs with probability �n in the unit of time, and its expected value is then
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�n(Ut+1 � Ut). As a result, the overall return from this �asset�is yt + �n(Ut+1 � Ut), which must

be equal to that obtained under the rate r, that is:

rUt = yt + �n(Ut+1 � Ut) (15)

Once substituting for yt = At(L� n)� and Ut+1 = Ut, (15) can be solved for Ut and gives:

Ut =
At(L� n)�
r � �n( � 1) (16)

If � is a given parameter, as in Aghion and Howitt (1992), then by maximizing (16) with respect

to n, it is easy to obtain the socially optimal research e¤ort:

n
(AH)
sp =

�( � 1) 1�L� r
�( � 1) 1���

(where sp stands for �social planner�and AH for Aghion-Howitt) to be compared with:

n(AH) =
� 1��� L� r
�+ � 1���

;

which is the laissez-faire optimal research e¤ort.

Our di¤erence with respect to the standard case depicted above is concerned with the social

planner�s ignorance about the true value of the arrival rate �. As in the laissez-faire problem, the

selection of a speci�c value of � between m and M depends on the decision rule adopted. Let us

�rst consider the maximin criterion: a max-minimizing planner always evaluates the social welfare

with respect to the worst possible state of nature. Then, by following an argument which closely

resembles the one elaborated for the case of laissez-faire, the equilibrium condition (15) simply

becomes:

rUt = yt +mn(Ut+1 � Ut)

Once again, by substituting for yt = At(L�n)� and Ut+1 = Ut, we obtain the welfare function

to be maximized:

Ut =
At(L� n)�
r �mn( � 1)

The maximization of this function with respect to n gives the socially optimal research e¤ort



38CHAPTER 3. IS STRONGUNCERTAINTY HARMFUL FOR SCHUMPETERIANGROWTH?

under the MMC as:

n�sp =
m( � 1) 1�L� r
m( � 1) 1���

;

which is equal to n(AH)sp except for the presence of m in the place of �.

Under the minimax regret criterion, with a reasoning in all respects analogous to that developed

in the case of laissez-faire, the equilibrium condition can be stated as follows:

yt +Mn(Ut+1 � Ut)� rUt = rUt � [yt +mn(Ut+1 � Ut)];

which �nally gives the following expression for Ut:

Ut =
At(L� n)�

r � m+M
2 n( � 1)

.

The maximization of Ut with respect to n gives the value of the socially optimal research e¤ort

under the MMRC as:

n��sp =
m+M
2 ( � 1) 1�L� r
m+M
2 ( � 1) 1���

:

If the optimism-pessimism index is the criterion adopted, then the unknown � is expressed

through an �-weighted average of m and M , and in equilibrium it must hold:

yt + [�m+ (1� �)M ]n(Ut+1 � Ut)] = rUt.

Solving the expression above for Ut gives:

Ut =
At(L� n)�

r � [�m+ (1� �)M ]n( � 1) ;

and the optimal research e¤ort under the OPIC is equal to:

n���sp =
[�m+ (1� �)M ]( � 1) 1�L� r
[�m+ (1� �)M ]( � 1) 1���

:

Finally, with the principle of insu¢ cient reason, the arithmetic mean of m and M replaces the

unknown �, and the equilibrium condition is:

yt +
m+M
2 n(Ut+1 � Ut)] = rUt,

which gives the same expression for Ut as the one we have derived in the case of the MMRC.

Hence, the socially optimal research e¤ort under the OPIC is identical to the one under the MMRC:
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n����sp = n��sp.

By comparing the optimal laissez-faire research e¤ort with the socially optimal one under all

four decision rules (that is, n� vs. n�sp, n
�� vs. n��sp and so on) we realize that, as in Aghion-Howitt

(1992), the former value can be higher or lower than the latter, and exactly for the same reason. The

�intertemporal spillover e¤ect�and the �appropriability e¤ect�tend to make the laissez-faire value

lower than the socially optimal value, while the �business stealing e¤ect�and the �monopoly distorsion

e¤ect�operate in the opposite direction (see Aghion-Howitt (1992) for a detailed explanation of these

e¤ects): the overall �nal result depends on the values of the parameters involved.

3.5 Concluding Remarks

In the preceding pages we have extended a basic neo-Schumpeterian framework, as developed in

Aghion and Howitt (1992), so as to encompass the investors�uncertainty about the arrival rate of

innovation. As in the standard framework, the evolution of innovation in the economy follows a

Poisson process. However here investors ignore the ��ow probability�of discovering an innovation,

represented by the Poisson parameter �. The unique assumption that we have imposed is concerned

with their knowledge of the set of its potential values ([m;M ] � ]0;1[). Afterwards we have

analyzed the two ��-sensitive decision problems�- namely, whether or not to invest in R&D, and

whether to buy risk-free assets or shares of monopolistic �rms - under four distinct non-probabilistic

decision rules: the maximin return, the minimax regret, the optimism-pessimism index and the

principle of insu¢ cient reason. We have then found the equilibrium R&D e¤orts in steady-state and

compared them with each other and with the Aghion-Howitt solution. We have �nally carried out the

comparative statics analysis and the welfare analysis, and proved that the basic neo-Schumpeterian

framework, as embodied in the Aghion-Howitt�s (1992) model, is robust to strong uncertainty.
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Chapter 4

An Uncertainty-Based Explanation

of Symmetric Growth in

Neo-Schumpeterian Growth

Models

4.1 Introduction

Most vertical R&D-driven growth models (such as Grossman-Helpman (1991), Segerstrom (1998),

Aghion-Howitt (1998, Ch.3)) focus on the symmetric equilibrium in the research industries, that is,

0This chapter is drawn from a joint paper with Guido Cozzi and Luca Zamparelli.
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on that path characterized by an equal size of R&D investments per sector. As is well known, in

these models the engine of growth is technological progress, which stems from R&D investment de-

cisions taken by pro�t-maximizing agents. By means of research each product line can be improved

an in�nite number of times and the �rms manufacturing the most updated version of a product mo-

nopolize the relative market and thus earn positive pro�ts. However, these pro�ts have a temporary

nature since any monopolistic producer is doomed to be displaced by successive improvements in

her product line. The level of expected pro�ts together with their expected duration, as compared

with the cost of research, determines the pro�tability of undertaking R&D in each sector.

Now, the plausibility of the symmetric equilibrium requires that each R&D sector be equally

pro�table, so that the agents happen to be indi¤erent as to where targeting their investments.

The pro�t-equality requirement implies two di¤erent conditions. First, the pro�t �ows deriving

from any innovation need be the same for each industry: this is guaranteed by assuming that all

the monopolistic industries share the same cost and demand conditions. Second, the monopolistic

position acquired by innovating needs be expected to last equally long across sectors: this requires

that the agents expect the future amount of research to be equally distributed among the di¤erent

sectors. As is well known to the reader familiar with the neo-Schumpeterian models of growth,

future is allowed to a¤ect current (investment) decisions via the forward-looking nature of the

Schumpeterian �creative destruction�e¤ect.

Grossman and Helpman (1991, p.47) recognize the centrality of the assumption of symmetric

expected R&D investments in order to justify the selection of the symmetric equilibrium: with

the assumption that �the pro�t �ows are the same for all industries [...] an entrepreneur will be

indi¤erent as to the industry in which she devotes her R&D e¤orts provided that she expects her

prospective leadership position to last equally long in each one. We focus hereafter on the symmetric
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equilibrium in which all products are targeted to the same aggregate extent. In such an equilibrium

the individual entrepreneur indeed expects pro�t �ows of equal duration in every industry and so

is indi¤erent as to the choice of industry�. Hence in this framework it is crucial to assume that an

equal distribution of future R&D e¤orts across industries is expected.

Although expecting equal future pro�tability across sectors constitutes a necessary condition for

each agent to choose a symmetric allocation of R&D e¤orts, it is however not su¢ cient: in fact,

equal future pro�tability makes the investor indi¤erent as to where targeting research. As a result,

the allocation problem of investments across product lines is indeterminate even if symmetric ex-

pectations are assumed. Notice also that the way this allocation problem is solved is not always

without consequence for this class of models, as recently pointed out by Cozzi (2003). For instance in

a Segerstrom�s (1998) framework, because of the �increasing complexity hypothesis�, the alternative

prevalence of the symmetric or asymmetric equilibrium has powerful e¤ects on the growth rate of

the economy: if indi¤erent agents, for a whatever reason (a �sunspot�), are induced to allocate their

investment only in a small fraction of sectors, the dynamic decreasing returns to R&D investments

will imply a lower aggregate growth rate as compared with the one associated with an equal distri-

bution of R&D e¤orts across all sectors. An equally relevant e¤ect of sunspot-driven asymmetric

R&D investments on steady-state growth rates reappears in the Howitt�s (1999) extension to an

ever expanding set of product lines (see Cozzi (2004)). Hence both solutions to the �strong scale

e¤ect�problem (Jones (2004)) exhibit dependence of growth rates on the intersectoral distribution

of R&D.

In this chapter we provide an alternative route to make the focus on the symmetric equilibrium

compelling. Our basic idea is that the agent�s beliefs on the future (per sector) distribution of R&D

investments are characterized by uncertainty (or ambiguity), in the sense that information about
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that distribution is too imprecise to be represented by a (single additive) probability measure. In

particular, we follow the maximin expected utility (MEU) decision rule axiomatized by Gilboa and

Schmeidler (1989) (see chapter 0 for an introduction to MEU). In our framework the decision maker is

then assumed to maximize her expected pay-o¤ with respect to the R&D investment decision, while

singling out the minimizing choice scenario, that is, the worst probability distribution over the future

con�guration of R&D investments. Unlike in Epstein and Wang (1994), here the maximin decision

rule eliminates indeterminacy and makes the symmetric - and growth maximizing - allocation of

R&D investment emerge as the unique equilibrium.

Importantly, our assumption on the agents�beliefs does not a¤ect any fundamentals of the econ-

omy and is to be interpreted as a way of treating sector-speci�c �extrinsic uncertainty�. Moreover,

since uncertainty does not a¤ect aggregate variables, in order to develop our argument, we don�t

need to introduce either the optimal consumption problem solved by households, or the pro�t-

maximizing problem solved by �rms (for which the reader is referred to Segerstrom (1998)). As the

problem is that of distributing a given amount of R&D e¤orts across product lines, all we need is

the description of the R&D sector.

Our result holds for a however small probability that a however small fraction of individual�s

portfolio be a¤ected by strong uncertainty. Hence a microscopic departure from the standard treat-

ment of extrinsic uncertainty leads to potential macroscopic growth consequences.

The rest of the chapter is organized as follows. In Section 4.2 we brie�y describe the basic

structure of the R&D sector, with particular reference to the Segerstrom�s (1998) formalization. In

Section 4.3 we explain the core of our argument, enunciate and prove the proposition. In Section

4.4 we conclude with some remarks.
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4.2 The R&D Sector

In this Section we provide a description of the vertical innovation sector which is basically common

to most neo-schumpeterian growth models. This sector is characterized by the e¤orts of R&D �rms

to develop better versions of the existing products in order to displace the current monopolists1 .

We assume a continuum of industries indexed by ! over the interval [0,1]. There is free entry

and perfect competition in each R&D race. Firms employ labor and produce, through a constant

returns technology, a Poisson arrival rate of innovation in the product line they target. Adopting

Segerstrom�s (1998) notation, any �rm hiring lj units of labor in industry ! at time t acquires the

instantaneous probability of innovating Alj=X(!; t), where X(!; t) is the R&D di¢ culty index.

Since independent Poisson processes are additive, the speci�cation of the innovation process

implies that the industry-wide instantaneous probability of innovation is ALI(!,t)/X(!; t) � i(!; t),

where LI(!; t)=
P

j lj(!; t)dj. The parameter X(!; t) describes the evolution of technology; as in

Segerstrom (1998), we assume it to evolve in accordance with

�
X(!; t)

X(!; t)
= �i(!; t)

where � is a constant. However we do not impose any sign restriction on �, in order to leave

the di¢ culty index increasing, decreasing or remaining constant as research accumulates. In the

next section we will return to this problem by specifying the range of values of � which render our

proposition signi�cant.

Whenever a �rm succeeds in innovating, she acquires the uncertain pro�t �ow that accrues to a

monopolist, that is, the stock market valuation of the �rm: let us denote it with v(!; t). Thus, the

1 It seems irrelevant to our purpose to distinguish whether the monopolistic sector is that of the �nal goods - as in
Segerstrom (1998) - or that of the intermediate ones - as in Aghion and Howitt (1998, Ch.3) and Howitt (1999).
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problem faced by an R&D �rm is that of choosing the amount of labor input in order to maximize

her expected pro�ts:

max
lj
[v(!; t)A=X(!; t)lj � lj ]

which provides a �nite, positive solution for lj only when the arbitrage equation2 v(!; t)A=X(!; t) =

1 is satis�ed. Notice that in this case, though �nite, the size of the �rm is indeterminate because of

the constant return research technology.

E¢ cient �nancial markets require that the stock market valuation of the �rm yield an expected

rate of return equal to the riskless interest rate r(t). The shareholder receives a dividend of �(t)dt3

over a time interval of length dt and the value of the monopoly appreciates by
�
v(!; t)dt if no �rm

innovates in the unit time dt. However, if an innovation occurs, the shareholder su¤ers a loss

of v(!; t). It happens with probability i(!; t)dt, whereas no innovation occurs with probability

[1� i(!; t)dt]: Therefore, the expected rate of return from holding a share of monopolistic �rm per

unit time is

�(t) +
�
v(!; t)[1� i(!; t)]
v(!; t)

� i(!; t)

which needs be equal to the interest rate r(t). From this equality we can derive the �rm�s market

valuation:

v(!; t) =
�(t)

r(t) + i(!; t)�
�
v(!; t)

v(!; t)
so that the R&D equilibrium condition is

�(t)A

X(!; t)[r(t) + (1� �)i(!; t)] = 1

since

2We consider the wage rate as the numerarie.
3We drop the ! argument from the pro�t function because, when assuming symmetric cost and demand conditions,

the pro�t �ows in each monopolistic industry coincide.
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�
v(!; t)

v(!; t)
=

�
X(!; t)

X(!; t)
= �i(!; t):

The usual focus on the symmetric growth equilibrium is based on the assumption that the R&D

intensity i(!; t) is the same in all industries ! at time t and strictly positive. The suggestion of a

new rationale for this symmetric behavior will be the topic of the next Section.

4.3 The re-Foundation of the Symmetric Equilibrium

We assume that the agent has a fuzzy perception of the future con�guration of R&D e¤orts and

formalize her investment strategy as an equilibrium resulting from a �two-player zero-sum game�

characterized by:

� the minimizing behavior of a �malevolent Nature�, which selects the prior belief associated

with the �worst possible scenario�inside a pre-speci�ed set of priors and

� the maximizing behavior of the agent, whose optimal choice must take into account the worst-

case strategy implemented by Nature.

Before proceeding with the analysis, let us clarify two important aspects of the model�s structure.

In the previous Section we have referred to the R&D �rm as the one choosing the size and the

distribution among sectors of R&D investments. However, R&D �rms are �nanced by consumers�

savings which are channeled to them through the stock market. Thus, since the consumer is allowed

to choose the R&D sectors where to employ her savings, she ends up with being our fundamental

unit of analysis. The role of the R&D �rms merely becomes that of transforming these savings into

research activity.

Notice also that in the basic set-up by which this work is inspired (Grossman and Helpman

(1991) and Segerstrom (1998)), the agent is assumed to be risk-averse. In fact, she is assumed to
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be able to completely diversify her portfolio - by means of the intermediation of costless �nancial

institutions - and then to only care about deterministic mean returns. This assumption is retained

in our set-up - which allows for a whatever asymmetric con�guration of investments - since, in order

to carry out this diversi�cation, it is su¢ cient to equally allocate investments in a non-zero measure

interval of R&D sectors (and not necessarily in the whole of them). The crucial di¤erence with

respect to the standard framework is then concerned with the assumption of uncertainty-averse

agents, where uncertainty only a¤ects the mean return of the R&D investment and not its volatility,

against which the agent has already completely hedged.

Assumption:

X(!; 0) = X0 8! 2 [0; 1]:

We assume that all industries share the same di¢ culty index X0 in order to focus on the role of

expectations on the kind of equilibrium that will prevail.

Our problem can be stated as follows: at time t = 0 an agent is asked to allocate a given amount

of R&D investment among all the existing sectors. As the agent is assumed to be uncertainty-

averse, in maximizing her expected pay-o¤ she will take into account the minimizing strategy that

a �malevolent nature�will be carrying out in choosing the composition of future R&D e¤orts. We

denote with lm+�(!) the agent�s investment in sector !, and with LI+"(!) the aggregate expected

research in sector !. lm and LI are, respectively, the agent�s average investment per sector and the

average expected research per sector. "(:) and �(:) represent deviations from the averages satisfying:

1R
0

"(!)d! = 0
1R
0

�(!)d! = 0 and

"(!) > �LI �(!) > �lm:
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The presence of the two functions �(�) and "(�) is intended to allow for asymmetry both in the

agent�s investment and in expected research4 . We also assume the space to be partitioned into two

events: symmetric and asymmetric con�guration of future R&D e¤orts. The �rst is supposed to

occur with probability 1� p while p stands for the aggregate probability of all possible asymmetric

con�gurations. The interval [0; p] represents the unrestricted set of priors assigned to each of them.

As we will see, the minimizing strategy carried out by Nature will end up with assigning probability

p to the worst asymmetric con�guration (which is function of the agent�s choice) and 0 to all the

others.

By partitioning the state space �con�guration of future investments�into the events �asymmetric�

and �symmetric�, and by assigning the probability distribution (p; 1� p) to them, we have implicitly

assumed that the decision maker has su¢ cient information to evaluate probabilistically the occur-

rence of both of them. In fact, what is subject to uncertainty, and then to a �conservative assessment�

through the maximin strategy, is the particular asymmetric con�guration that would possibly take

place among all those generated by the deviation ": Our conclusions do not crucially hinge on this

partition5 .

We can now enunciate the following:

Proposition 6 For a however small probability (p) of deviation ("(!)) and for a however small

deviation ("(!)) from symmetric expectation on future R&D investment, uncertainty-averse agents

4These de�nitions imply:
1R
0

[LI + " (!)] d! = LI = L
1R
0

[lm + � (!)] d! = Llm

where L denotes the number of agents in the economy.
With reference to Section 2 the following relation between lj and lm holds:
1R
0

P
j lj (!) d! = Llm:

5For example, it can easily be shown how our result holds for a however small perturbation of the probability
distribution assigning equal probabilities to every possible con�guration of future R&D investment across sectors.
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who adopt a maximin strategy to solve their investment allocation problem, choose a symmetric

investment strategy, i.e. lm + �(!) = lm 8! 2 [0; 1]. Their optimal investment choice makes them

expect a symmetric distribution of future R&D e¤ort among sectors: LI + "(!) = LI 8! 2 [0; 1].

Proof. max
�(:)

24min
"(:)

1R
0

[lm + �(!)]
A

X0
v(!)d!

35
sub

1R
0

"(!)d! = 0 ;
1R
0

�(!)d! = 0

where now

v(!) = p �

r+
A
X0

[LI+"(!)](1��)
+ (1� p) �

r+
A
X0

LI(1��)

Then the problem is equivalent to:

max
�(:)

264min
"(:)

1R
0

[lm + �(!)]

 
p

A
X0

�

r+
A
X0

[LI+"(!)](1��)
+ (1� p)

A
X0

�

r+
A
X0

LI(1��)

!
d!

375 =

= (1� p)
lm

A
X0

�

r+
A
X0

LI(1��)
+ pmax

�(:)

264min
"(:)

1R
0

[lm + �(!)]
A
X0

�

r+
A
X0

[LI+"(!)](1��)
d!

375 :
In order to solve the maxmin problem above, we only need to consider the second term, since

the �rst term is constant, that is:

max
�(:)

266664min"(:)

1R
0

[lm + �(!)]

A

X0
�

r +
A

X0
[LI + "(!)] (1� �)

d!

377775
sub

1R
0

"(!)d! = 0 ;
1R
0

�(!)d! = 0.

Notice that this is valid for however small probability p. We restrict our attention to the case:

0 < v(!) < +1. As at time t = 0, A;X0; �; r are assumed to be positive constants, that condition

is equivalent to imposing r +
A

X0
[LI + "(!)] (1 � �) > 0 () � < 1 +

rX0
A [LI + "(!)]

: Moreover we
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want � 6= 1, otherwise the creative destruction e¤ect disappears from v(!) making our problem

independent of expectations.

Let us suppose the following (not necessarily minimizing) expected reaction function of Nature:

"(!) = t�(!) with t > 0. Notice that, as t tends to zero, the deviation in each sector can be made

arbitrarily small independently of the population size. The objective function then becomes:

1R
0

[lm + �(!)]

A

X0
�

r +
A

X0
[LI + t�(!)] (1� �)

d!

Since [lm+�(!)]

A

X0
�

r +
A

X0
[LI + t�(!)] (1� �)

is a strictly concave function of �(!)6 , by Jensen�s

inequality its integral

1R
0

[lm + �(!)]

A

X0
�

r +
A

X0
[LI + t�(!)] (1� �)

d!

is maximized by �(!) = 0 for all ! 2 [0; 1]. Therefore, if �(!) 6= 0 in a non-zero measure subset

of [0; 1], it follows:

min
"(:)

1R
0

[lm + �(!)]

A

X0
�

r+
A

X0
[LI+"(!)](1��)

d! �
1R
0

[lm + �(!)]

A

X0
�

r+
A

X0
[LI+t�(!)](1��)

d!

<
1R
0

[lm + �(!)]

A

X0
�

r+
A

X0
LI(1��)

d! =

A

X0
�lm

r +
A

X0
LI(1� �)

(D)

which is instead attained if �(!) = 0 for all ! 2 [0; 1] (almost everywhere). If indeed �(!) = 0

for all ! 2 [0; 1] (almost everywhere), Jensen�s inequality implies:

min
"(:)

1R
0

lm

A

X0
�

r +
A

X0
[LI + "(!)] (1� �)

d! =

A

X0
�lm

r +
A

X0
LI(1� �)

(E)

which is attained if "(!) = 0 for all ! 2 [0; 1] (almost everywhere).

6 It can be easily veri�ed that the concavity of the function is ensured by the condition � < 1 +
rX0

A [LI + "(!)]
;

that we have already imposed.
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Therefore the worst harm Nature can in�ict to the agent in the case �(!) = 0 is always better

for the agent than the worst harm Nature can in�ict in the case �(!) 6= 0. This fact is represented

by the expression (E) and the disequality (D): if the agent chooses to play a symmetric strategy

(�(!) = 0), the minimizing strategy of Nature is also the symmetric one ("(!) = 0), as stated in

(E). On the contrary, if the agent chooses to play a whatever asymmetric strategy (�(!) 6= 0 in a

non-zero measure subset of [0; 1]), then the minimizing strategy of Nature, whatever it is, brings to

the agent a pay-o¤ which is strictly lower than the one she gets by playing the symmetric strategy,

as stated in (D). The crucial point is that we do not need to compute the exact minimizing strategy

of Nature for every agent�s choice in order to draw the conclusion that the symmetric portfolio -

and zero measure deviations from it - is the max-minimizing strategy of the agent. Notice also that

we have used the particular reaction function "(!) = t�(!) in order to state the disequality (D),

and that this function does not result in any loss of generality of the proof. Finally, since this result

holds for any t > 0 and 0 < p < 1, the statement follows for however small deviations and their

probabilities.

Then, even if the agent is �almost sure�(p ! 0) of facing a symmetric con�guration of future

investments (which would leave her in a position of indi¤erence in her current allocation problem),

the mere possibility of a slightly di¤erent con�guration ("! 0) makes her strictly prefer to equally

allocate her investments across sectors. This occurs because, whenever the agent evaluates an

asymmetric allocation of her current investments, she will always be induced to expect the worst

con�guration of future investments inside the "-generated set.
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4.4 Concluding Remarks

In the neo-schumpeterian growth models the existence of the creative destruction e¤ect implies that

expectations on future R&D investments a¤ect the allocation of current ones. Therefore the usual

focus on the symmetric equilibrium in the vertical research sector relies on the assumption of a

symmetric expected per-sector distribution of R&D expenditure. However, in making the agents

indi¤erent as to where targeting their investments, this assumption is not su¢ cient to univocally

pin down the symmetric structure of R&D e¤orts: actually symmetric expectation on future R&D

leaves the current composition of R&D investments indeterminate, with potentially large e¤ects on

growth rates.

We have shown that a possible way out of this indeterminacy is that of assuming uncertainty

on the future con�guration of R&D investments and max-minimizing agents in the face of this

uncertainty. Under this assumption, indeterminacy vanishes and the symmetric allocation of the

vertical research expenditures comes out as the unique optimal solution.
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Chapter 5

Uncertainty Averse Agents in a

Quality-Ladder Growth Model

with Asymmetric Fundamentals

5.1 Introduction

Quality ladder growth models, such as Grossman-Helpman (1991) and Segerstrom (1998), focus on

the role of technical progress as the main source of economic growth. In this class of models technical

change is the outcome of R&D investment decisions taken by pro�t maximizing �rms. Any product

line can be improved an in�nite number of times by means of research, and the �rms manufacturing

the most updated version of a product monopolize the relative market and earn positive pro�ts.

However, these pro�ts have a temporary nature, because they last until the next improvement in the

55



56CHAPTER 5. UNCERTAINTY AVERSE AGENTS IN A QUALITY-LADDERGROWTHMODELWITH ASYMMETRIC FUNDAMENTALS

same product line occurs. In the neo-Schumpeterian literature this e¤ect is commonly referred to as

�creative destruction�. The pro�tability of undertaking R&D in each sector depends on three sets of

conditions: the magnitude of the pro�t �ows associated with any monopolistic position, the di¢ culty

of acquiring such a position (i.e., the probability of innovating) and its expected duration. We can

refer to the �rst two sets of conditions as the fundamentals of the economy, as they respectively

depend on the costs and demand conditions of the commodity sector and on the technology of the

research industry. On the other hand, the expected duration of the pro�t �ows in a particular R&D

sector depends on the agents�expectations on the future amount of research which will be carried

out in that sector. That is, future a¤ects current investment decisions to the extent that agents

anticipate the �creative destruction�e¤ect.

In the standard literature the economy is assumed to have symmetric fundamentals: any sector

shares the same cost and demand conditions, as well as the same probabilty of innovating. In order

to equalize the overall pro�tability across the R&D sectors, symmetric expectations on future R&D

investments are also assumed. With these assumptions, the focus on the symmetric equilibrium in

R&D investments is made plausible.

In this Chapter we generalize a standard quality-ladder growth model, with particular reference

to Segerstrom (1998), by assuming asymmetric fundamentals1 . We �nd that the creative destruction

e¤ect due to the expectations on future research is the sole responsible for equalizing the expected

returns in R&D; such equalization is required if we want to derive positive R&D e¤orts in each

industry. Moreover, as the rational expectations equilibrium requires the equality between expecta-

tions on research investments and their actual values, the actual investments in R&D will equalize

the returns across sectors. Still, it does not seem that this RE equilibrium is uniquely pinned down,

1See also Zamparelli (2003).
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since equal future pro�tability makes the investor indi¤erent as to where targeting research. As a

result, when the expectations on future research equalize the expected returns for all R&D soctors,

the allocation problem of investments across product lines is indeterminate. Our main purpose is

then to micro-found the equilibrium which equalizes returns across sectors2 . We assume that, while

agents have perfect knowledge of the fundamentals of the economy, their beliefs on the future (per

sector) distribution of R&D investments are characterized by strong uncertainty. To formalize the

idea that information about that distribution is too vague to be represented by a - single additive

- probability measure, here we will follow once again the maximin expected utility (MEU) model

axiomatized by Gilboa and Schmeidler (1989) (see chapter 0 of this book for a basic introduction).

This means, in our framework, that the decision maker will be assumed to maximize her expected

pay-o¤ with respect to the R&D investment decision, while singling out the worst probability dis-

tribution (inside her set of multiple priors) over the future con�guration of R&D investments. With

this assumption we provide a re-foundation of the rational expectations equilibrium, in which ac-

tual and expected R&D e¤orts are equal among each others and are such that returns are equalized

across sectors.

The rest of the chapter is organized as follows. In Section 5.2 we introduce the asymmetric

model. In Section 5.3 we explain the core of our argument, enunciate and prove the propositions.

In Section 5.4 we conclude with some remarks.

2Notice that this is a problem analogous to the one that we encountered in the previous chapter with reference to
the standard symmetric models. As we will see, the solution to this problem is also very similar.
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5.2 The Model

As usual, we assume a continuum of industries producing �nal goods indexed by ! 2 [0; 1]: Asym-

metry is introduced by assuming industry-speci�c:

� quality-jumps (�(!)) in technical progress

� arrival rates of innovation (A(!))

� weights of the Cobb-Douglas utility function (�(!))

� unit production costs in the manufacturing sector (l!)

We also suppose a �xed number of dynastic households (normalized to one), whose members

grow at the constant rate n > 0. Each member shares the same intertemporally additively separable

utility u(t) and is endowed with a unit of labor she supplies inelastically. Therefore each household

chooses its optimal consumption path by maximizing the discounted utility:

U �
1R
0

L(0)e�(��n)t log u(t)dt (1)

where L(0) � 1 is the initial population and � > n is the common rate of time preferences. With

log u(t) �
1R
0

�(!) log

"
jmax(!;t)P
j=0

�j(!)d(j; !; t)

#
d!,

the static maximization problem can be represented as:

max
1R
0

�(!) log

"
jmax(!;t)P
j=0

�j(!)d(j; !; t)

#
d! (2)

s.t. E(t) =
1R
0

"
jmax(!;t)P
j=0

p(j; !; t)d(j; !; t)

#
, (3)

where d(j; !; t) and p(j; !; t) denote, respectively, consumption and price of good ! of quality j

at time t. E(t) is the total expenditure at time t. jmax(!; t) denotes the highest quality reached by

product ! at time t. We impose
1R
0

�(!)d! = 1 to represent the homogeneity of degree one of the

utility function.
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At each point in time consumers maximize static utility by spreading their expenditure across

sectors proportionally to the utility contribution of each product line (�(!)), and by only purchasing

in each line the product with the lowest price per unit of quality. As usual in quality-ladder models,

because of the Bertrand competition in the manufacturing sector, this product is the one indexed

by jmax(!; t). Then, the individual static demand functions are:

d(j; !; t) =

8>>>>>>>><>>>>>>>>:

�(!)E(t)

p(j; !; t)
for j = jmax(!; t)

0 otherwise

(4)

Moreover, since only the jmax(!; t) quality product is actually purchased, in what follows it will

be:
jmax(!;t)P
j=0

�j(!) = �j
max(!;t)(!).

Substituting (4) into (2) and (2) into (1), we obtain the intertemporal maximum problem

max
E
U =

1R
0

e�(��n)t
�
logE(t) +

1R
0

�(!)
h
log�(!) + log �j

max(!;t)(!)� log p(j; !; t)
i
d!

�
dt

s.t.
1R
0

e�
R t
0
[r(s)�n]dsE(t)dt � A(0),

where r(s) is the instantaneous interest rate at time s and A(0) is the present value of the stream

of incomes plus the value of initial wealth at time t = 0: The solution to this problem obeys the

di¤erential equation:

_E(t)

E(t)
= r(t)� �: (5)

Each good is produced by only employing labor through a constant return to scale technology. In

order to produce one unit of good !, �rms hire l! units of labor regardless of quality. The Bertrand

competition implies that the quality leader monopolizes her relative market, and that the limit price

she can charge is p [jmax(!; t); !; t] = �(!)wl!: Then the pro�t �ows in each sector are:

�(!; t) =
�(!)� 1
�(!)

�(!)E(t)L(t):
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Firms can engage in R&D to develop better versions of the existing products in order to displace

the current monopolists. As usual, we assume free entry and perfect competition in each R&D

race. Firms employ labor and produce, through a constant returns technology, a Poisson arrival

rate of innovation in the product line they target. Any �rm hiring lk units of labor in industry !

at time t acquires the instantaneous probability of innovating A(!)lk=X(!; t), where X(!; t) is the

R&D di¢ culty index, which is introduced to rule out the �scale e¤ect�. Since independent Poisson

processes are additive, the speci�cation of the innovation process implies that the industry-wide

instantaneous probability of innovation (or research intensity) is:

A(!)LI(!; t)

X(!; t)
� i(!; t); (6)

where LI(!; t) =
P

k lk(!; t). As R&D proceeds, its di¢ culty indexX(!; t) is assumed to increase

over time (so as to rule out the scale e¤ect). With reference to Segerstrom (1998), we model the

increasing complexity hypothesis according to what is usually called �TEG speci�cation�3 :

_X(!; t)

X(!; t)
= �i(!; t), (TEG)

where � is a positive constant.

Whenever a �rm succeeds in innovating, she acquires the uncertain pro�t �ow that accrues to a

monopolist, that is, the stock market valuation of the �rm: v(!; t). Thus, the problem faced by a

R&D �rm is that of choosing the amount of labor input in order to maximize her expected pro�ts:

max
lk

�
v(!; t)A(!)

X(!; t)
lk � lk

�
:

The expression above provides a �nite, positive solution for lk only when the arbitrage equation4 :

3The acronym TEG stands for �Temporary e¤ects on growth� of policy measures such as subsidies and taxes.
Useful surveys on the scale e¤ect problem and on the way it has been solved are Dinopoulos and Thompson (1999)
and Jones (1999 and 2003).

4We consider the wage rate as the numerarie.
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v(!; t)A(!)

X(!; t)
= 1

is satis�ed. E¢ cient �nancial markets require that the stock market valuation of the �rm yields

an expected rate of return equal to the riskless interest rate r(t). Then, the �rm�s market valuation

is:

v(!; t) =
�(!; t)

r(t) +
A(!)LI(!; t)

X(!; t)
�

�
v(!; t)

v(!; t)

;

so that the R&D equilibrium condition is:

�(!; t)A(!)

X(!; t)

"
r(t) +

A(!)LI(!; t)

X(!; t)
�

�
v(!; t)

v(!; t)

# = 1. (7)

Since in each industry the market demand D(!; t) = �(!)E(t)L(t)
�(!)l!

requires D(!; t)l! units of

labor in order to be produced, the total employment in the manufacturing sector is given by
1R
0

�(!)E(t)L(t)
�(!) d!: Then, the labor market-clearing condition implies:

L(t) =
1R
0

�(!)E(t)L(t)

�(!)
d! +

1R
0

LI(!; t)d! (8)

where
1R
0

LI(!; t)d! is the total employment in the research sector.

The rational expectations equilibrium requires that, at each point in time, the expected LI(!; t),

on which the �creative destruction e¤ect�depends, be equal to its actual value. This would allow us

to consider LI(!; t) in (7) and (8) as the same variable and to derive the equilibrium values of E(t)

and LI(!; t); which contemporarily verify the system made up of (7) and (8). We could then solve

for the steady-state values of E and LI(!; t) and obtain5 :

E =

�

n
�+ 1� ���

n
�� �

� 1R
0

�(!)

�(!)
d! + 1

and

5For the derivation of these results see Zamparelli (2003).
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LI(!; t) = L(t)

�(!)� �(!)
�(!)��

n
�� �

� 1R
0

�(!)

�(!)
d! + 1

In the next Section our assumption on the agents�beliefs will allow for separating the actual and

the expected R&D e¤orts.

5.3 The Equilibrium with Uncertainty Averse Agents

In deriving our result we will assume that the agent�s beliefs on the future composition of R&D

e¤orts are �strongly�uncertain. This assumption essentially incorporates the idea that the agent

ignores both the (true) future distribution of R&D investments across sectors and a precise (single

additive) probability measure over all possible (investment) distributions. In our allocation problem,

a preference for certainty (or �uncertainty aversion�) is introduced and basically formalized as in the

MEU model (Gilboa and Schmeidler (1989)). As we clari�ed in chapter 0, in representing subjective

beliefs, MEU suggests to replace the standard single prior with a closed and convex set of priors.

The choice among alternative acts is determined by a maximin strategy. For each act the agent

�rst computes the expected utilities with respect to each single prior in the set and picks up the

minimal value. Finally she compares all these values and singles out the act associated with the

highest (minimal) expected utility.

Before proceeding with the analysis, let us �rst make an important remark. In the previous

Section we have referred to the R&D �rm as the one choosing the size and the distribution among

sectors of R&D investments. However, R&D �rms are �nanced by consumers�savings, which are

channeled to them through the stock market. Thus, since the consumer is allowed to choose the

R&D sectors where to employ her savings, she ends up with being our fundamental unit of analysis.
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The role of the R&D �rms merely becomes that of transforming these savings into research activity.

The agent is asked to allocate a certain amount of R&D investment among all the existing

sectors. In maximizing her expected pay-o¤ she will take into account the minimizing strategy

that a �malevolent nature�will be carrying out in choosing the composition of future R&D e¤orts.

The formalization of the investment allocation problem closely resembles the one we have seen in

the preceding Chapter. We denote with lm + (!) the agent�s investment in sector !, and with

LI + "(!) the aggregate expected research in sector !. lm and LI are, respectively, the agent�s

average investment per sector and the average expected research per sector. "(:) and (:) represent

deviations from the averages satisfying:

1R
0

"(!)d! = 0
1R
0

(!)d! = 0 and

"(!) > �LI (!) > �lm:

The presence of the two functions (�) and "(�) is intended to allow for asymmetry both in the

agent�s investment and in expected research6 . We also assume the space to be partitioned into two

events: symmetric and asymmetric con�guration of future R&D e¤orts. The �rst is supposed to

occur with probability 1� p, while p stands for the aggregate probability of all possible asymmetric

con�gurations. The interval [0; p] represents the unrestricted set of priors assigned to each of them.

As we will see, the minimizing strategy carried out by Nature will end up with assigning probability

p to the worst asymmetric con�guration (which is function of the agent�s choice) and 0 to all the

others. We can now enunciate the following:

6These de�nitions imply:
1R
0

[LI + " (!)] d! = LI = L
1R
0

[lm + � (!)] d! = Llm

where L denotes the number of agents in the economy.
With reference to Section 2 the following relation between lj and lm holds:
1R
0

P
j lj (!) d! = Llm:
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Proposition 7 For a however small probability (p) of deviation from the �return-equalizing� ex-

pectations on future R&D investment, uncertainty averse agents choose the following investment

strategy:

lm + (!) = lm
�(!; t)

1R
0

�(!; t)d!

8! 2 [0; 1]:

Their expectation on the distribution of future R&D e¤ort among sectors is:

LI + "(!) =
�(!; t)

1R
0

�(!; t)d!

�
LeI(t) +

r(t)

(1� �)
1R
0

X(!; t)

A(!)
d!

�
� r(t)

(1� �)
X(!; t)

A(!)
8! 2 [0; 1].

Proof. See Appendix A1.

This result proves to be relevant as soon as we turn to the steady-state equilibrium. In steady-

state all endogenous variables grow at constant rates,
_X(!; t)

X(!; t)
� �i(!) = n and, as

_E(t)

E(t)
= 0,

r(t) = �. It is easy to show, by substituting for LeI(t) + "(!; t) into v(!; t); that the R&D returns

(v(!; t)A(!)=X(!)) are equalized across sectors. In particular7 :

v(!; t)A(!)=X(!) =

�
LeI(t)

EL(t)

�
1� �+ ��

n

���1
:

Now, by using the arbitrage equation of any of the R&D sectors (equation (7)), we can solve for

LeI(t) :

LeI(t) =

EL(t)

�
1� �(!)

�(!)

�
�

n
�+ 1� �

(9)

The market-clearing condition is:

L(t) =
1R
0

�(!)EL(t)

�(!)
d! + L(t)

1R
0

[lm + (!; t)] d!

Dividing by L(t), it can be written as:

1 = E
1R
0

�(!)

�(!)
d! + lm (10)

7The derivation of the following result is worked out in Appendix A2.
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The steady-state resource (10) and arbitrage (9) equations allow us to �nd the equilibrium values

of lm and E.

E =

�

n
�+ 1� ���

n
�� �

� 1R
0

�(!)

�(!)
d! + 1

lm =

1�
1R
0

�(!)

�(!)
d!��

n
�� �

� 1R
0

�(!)

�(!)
d! + 1

:

We can now state the following:

Proposition 8 If agents are uncertain on the future R&D per-sector distribution and adopt a max-

imin strategy to solve their R&D allocation problem, in steady state the actual investments make the

R&D returns equal across sectors. The values of these investments are:

lm + (!; t) =

�(!)� �(!)
�(!)��

n
�� �

� 1R
0

�(!)

�(!)
d! + 1

:

Proof. See Appendix A3.

5.4 Concluding Remarks

In this Chapter we have �rst extended a basic quality-ladder growth model (see Grossman-Helpman

(1991) and Segerstrom (1998)), to embrace the possibility of asymmetric fundamentals across the

existing sectors. In this model, developed in Section 5.2, we have then pointed out that, in order

for each sector to be characterized by positive research e¤ort in steady-state, it is necessary that

expectations on future research make returns equal across sectors. However, we have argued, if these

returns are perfectly equalized, the investor happens to be totally indi¤erent as to where targeting

research. Hence, the investment allocation problem across sectors is indeterminate. As we have

seen in the previous Chapter, this problem of indeterminacy also exists in the standard (symmetric)
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framework and, in that case, we have provided a solution based on the agents�uncertain beliefs about

the exact distribution of R&D investments across the exisiting sectors. Even if it is implemented in a

more complicated framework and implies di¤erent technicalities (see the Appendix), the solution we

have proposed here is much in the same spirit as that of the preceding Chapter. We have assumed

the agents to be uncertain about the future con�guration of R&D investments in the sense of Gilboa

and Schmeidler (1989), and to �guard themselves�against uncertainty by using a maximin strategy.

As proven in Section 5.3, it is su¢ cient a however small probability of expecting a non-return-

equalizing future con�guration of investments to induce the agents to make the �right choice�, and

hence, to univocally pin down the (rational expectations) return-equalizing equilibrium.

5.5 Appendix A1

Proof of proposition 11. max
(�)

�
min
"(�)

1R
0

[lm + (!; t)] v(!; t)
A(!)

X(!; t)
d!

�
s.t.

1R
0

(!; t)d! =
1R
0

"(!; t)d! = 0

s.t. "(!; t) > �LeI ; (!; t) > �lm:

where v(!; t) � �(!; t)

r(t)� _v(!; t)

v(!; t)
+

A(!)

X(!; t)
[LeI(t) + "(!; t)]

Under TEG speci�cation
_X(!; t)

X(!; t)
= �

A(!)

X(!; t)
[LeI(t) + "(!; t)]. Moreover, as by di¤erentiating

(7) with respect to time, we obtain:
_v(!; t)

v(!; t)
=

_X(!; t)

X(!; t)
, then

v(!; t) � �(!; t)

r(t) + (1� �) A(!)

X(!; t)
[LeI(t) + "(!; t)]

Notice that the return of any investment is industry-speci�c
�
v(!; t)

A(!)

X(!; t)

�
with probability

p, while it is constant across industry with probability (1 � p) (let us de�ne this constant value as

q(t)). Then the problem is equivalent to:
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max
(:)

2664min"(:)

1R
0

[lm + (!; t)]

0@p A(!)�(!;t)

X(!)

�
r(t)+(1��) A(!)X(!;t) [L

e
I(t)+"(!;t)]

� + (1� p)q(t)
1A d!

3775
= (1� p)q(t) + pmax

(:)

2664min"(:)

1R
0

[lm + (!; t)]
A(!)�(!;t)

X(!)

�
r(t)+(1��) A(!)X(!;t) [L

e
I(t)+"(!;t)]

�d!
3775

which admits the same solution as:

max
(:)

2666664min"(:)

1R
0

[lm + (!; t)]
A(!)�(!;t)

X(!)

0@r(t)+(1��) A(!)
X(!; t)

[LeI(t)+"(!;t)]

1Ad!

3777775.
Notice that this is valid for a however small probability p: Given these conditions, we �rst solve

for the minimization problem:

min
"(�)

1R
0

[lm + (!; t)]�(!; t)

X(!; t)

A(!)
r(t) + (1� �)(LeI(t) + "(!; t))

d!

s.t.
1R
0

"(!; t)d! = 0

We set e(!; t) =
!R
0

"(s; t)ds; then e0(!; t) = "(!; t) 8! 2 [0; 1] and the minimization problem

(Pmin) can be expressed as:

min
e0(�)

1R
0

G(e0)d!

s.t. e(0) = 0; e(1) = 0

where G(e0) =
[lm + (!; t)]�(!; t)

X(!; t)

A(!)
r(t) + (1� �)(LeI(t) + "(!; t))

This is the simplest problem of calculus of variations. Since under the conditions speci�ed above

G(e0) 2 C2, we can apply the Euler theorem stating that:

if G(e; e0; !) 2 C2 and e� is optimal and C1, then e� must necessarily solve:

Ge �
d

d!
Ge0 = 0 (E-E)

As in our case G does not depend on e, Ge = 0; hence E-E becomes:
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d

d!
Ge0 = 0,

implying that:

Ge0 � G" = � �(!;t)[lm+(!;t)]24X(!; t)
A(!)

r(t)+(1��)(LeI(t)+"(!;t))

352
be constant with respect to !:Hence:

�(!; t) [lm + (!; t)]�
X(!; t)

A(!)
r(t) + (1� �)(LeI(t) + "(!; t))

�2 = k1
where k1 is a real constant. Now we solve the expression above for "(!) :

"(!) =

s
�(!; t) [lm + (!; t)]

k1(1� �)
� X(!; t)

A(!)(1� �)r(t)� L
e
I(t) (R-F)

This function can easily be interpreted as the reaction function (R-F) of the �nature� to the

agent�s decision. We can now plug it into the maximization problem (Pmax) and solve for :

max
(:)

1R
0

[lm + (!; t)]
�(!; t)r

�(!; t) [lm + (!; t)] (1� �)
k1

d!

sub
1R
0

(!; t)d! = 0

Rearranging, this problem becomes:

max
(:)

1R
0

[lm + (!; t)]
1
2 (�(!; t)k1=(1� �))

1
2 d!

sub
1R
0

(!; t)d! = 0.

Again, we solve Pmax as a problem of calculus of variations. By setting c(!; t) =
!R
0

(s; t)ds, so

that c0(!; t) = (!; t), Pmax becomes:
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max
c0

1R
0

F (c0)d!

sub c(0) = 0 ; c(1) = 0

where F (c0) � F () = [lm + (!; t)]
1
2 [�(!; t)k1]

1
2

With the same reasoning as before, the Euler Equation Fc �
d

d!
Fc0 = 0 implies:

Fc0 � F = �
(�(!; t)k1)

1
2

2[lm + (!; t)]
1
2

= �k2 [F ]

where k2 2 R+. From F we can derive the expression for (!; t):

(!; t) =
�(!; t)k1
4k22

� lm (A1)

Plugging it into the (R-F), we get:

"(!) =

vuuut�(!; t)

�
lm +

�(!; t)k1
4k22

� lm
�

k1
� X(!; t)

A(!)(1� �)r(t)� L
e
I(t) =

=
�(!; t)

2k2
� X(!; t)

A(!)(1� �)r(t)� L
e
I(t) (A2)

Now we can use the two conditions imposed by the constraints in order to �nd the constants k1,

k2:
1R
0

(!; t)d! = 0 ()
1R
0

�
�(!; t)k1
4k22

� lm
�
d! = 0

Hence:

k1 =
4k22(1� �)lm
1R
0

�(!; t)d!

(A3)

and
1R
0

"(!; t)d! = 0 ()
1R
0

�
�(!; t)

2(1� �)k2
� X(!; t)

A(!)(1� �)r(t)� L
e
I(t)

�
d! = 0

whence:

k2 =

1R
0

�(!; t)d!

2(1� �)
�
r(t)

(1� �)
1R
0

X(!; t)

A(!)
d! + LeI(t)

� (A4)
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Substituting (A4) into (A3), we obtain:

k1 =

lm
1R
0

�(!; t)d!

(1� �)
�
r(t)

(1� �)
1R
0

X(!; t)

A(!)
d! + LeI(t)

�2 (A5)

Finally we can plug (A4) and (A5) into (A1) and (A2) in order to get the optimal pair �(!; t),

"�(!; t):

�(!) =
�(!; t)k1
4k22

� lm =

�(!;t)

lm
1R
0

�(!;t)d!

(1��)
"
r(t)
(1��)

1R
0

X(!;t)
A(!) d!+L

e
I(t)

#2
1R
0

�(!;t)d!

2(1��)
"
r(t)
(1��)

1R
0

X(!;t)
A(!) d!+L

e
I(t)

#
� lm

= lm

26664 �(!; t)
1R
0

�(!; t)d!

� 1

37775

"�(!) =
�(!; t)

1R
0

�(!; t)d!

�
r(t)

(1� �)
1R
0

X(!; t)

A(!)
d! + LeI(t)

�
� r(t)

(1� �)
X(!; t)

A(!)
� LeI(t) =

= LeI(t)

26664 �(!; t)
1R
0

�(!; t)d!

� 1

37775+ �(!; t)
1R
0

�(!; t)d!

r(t)

(1� �)
1R
0

X(!; t)

A(!)
d! � r(t)

(1� �)
X(!; t)

A(!)

from which we can easily obtain the result of proposition 11.

5.6 Appendix A2

We derive the steady state value of v(!; t)A(!)=X(!) by substituting for LeI(t) + "(!; t) given in

proposition 11.

A(!)v(!)

X(!)
=

�(!; t)A(!)

X(!; t)�+
A(!)LeI(t) + "(!; t)

X(!; t)
(1� �)

=
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= �(!;t)

X(!;t)
A(!) �+(1��)

0BB@ �(!;t)
1R
0

�(!;t)d!

 
LeI(t)+

�
(1��)

1R
0

X(!;t)
A(!) d!

!
� �
(1��)

X(!;t)
A(!)

1CCA
=

= �(!;t)

�

n
�(LeI(t)+"(!;t))+(1��)

0BB@ �(!;t)
1R
0

�(!;t)d!

�
LeI(t)+

�
(1��)

�

n
LeI(t)

�
� �
(1��)

�

n
(LeI(t)+"(!;t))

1CCA
=

(where we substituted for the steady state value of X(!; t) =
�

n
A (LeI(t) + "(!; t)))

=
�(!; t)

(1� �) �(!; t)
1R
0

�(!; t)d!

LeI(t) +
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5.7 Appendix A3

Proof of Proposition 12. By plugging the mean value lm into the expression for lm+ (!) that

we have found in Proposition 1, we obtain:

lm+(!) = lm
�(!; t)

1R
0

�(!; t)d!

=

1�
1R
0

�(!)

�(!)
d!��

n
�� �

� 1R
0

�(!)

�(!)
d! + 1

:

�(!)� �(!)
�(!)

1�
1R
0

�(!)

�(!)
d!

=

�(!)� �(!)
�(!)��

n
�� �

� 1R
0

�(!)

�(!)
d! + 1

These are the steady state per sector investments. As these values are exactly the same as those

we derived for the asymmetric case under certainty conditions, we have re-founded the asymmetric

equilibrium which equalizes the R&D investments across sectors.
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